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Abstract

In 1736, in the town of Königsberg it was asked, “Is it possible to walk across the seven bridges

that span the river Pregel, which divide the town of Königsberg into four land masses, without

having to cross any bridge more than once?” Euler observed that it was unnecessary to consider

the size of the land masses, the length of the bridges or the route taken to traverse the bridges in

order to answer this question. He showed that the problem could be abstracted by considering

only the topology of the network, where a network is a group or system of interconnected things

or nodes: in this case the four land masses; and a topology is the way in which constituent

parts are interrelated or linked: in this case, whether there is a bridge between any two chosen

landmasses or not. The Königsberg bridge problem was the first problem in recorded history to

be formulated in graph theoretic terms, that is, as the topology of a network. Euler’s solution

to this problem is considered to be the first theorem of graph theory.

Today, 275 years later, graph theory is a vibrant field of research with remarkably diverse appli-

cations, including: molecular chemistry; developing vaccination strategies to prevent the spread

of viruses through human populations and computer networks; modelling complex ecological

systems; analysis of social networks; and the design of VLSI (very large scale integrated circuits)

of multiprocessors. In this thesis we consider questions in two separate but related research

areas in the field of graph theory, namely, extremal graph theory and connectivity.

Extremal graph theory is the study of graphs that are extremal, that is, maximal or minimal,

under some given constraints. In this thesis we focus on the problem of finding the maximum

number of pair-wise connections between the nodes in a network, given the number of nodes

and the length of the shortest cycle in the network. A graph that attains this bound is called

an extremal graph. Our interest in extremal graphs arose from the problem of determining the

structure of the most efficient and reliable networks. We provide constructions that produce

infinite families of extremal graphs. We examine the relationship between extremal graphs and

some other graphs that have been considered in the design of optimal networks. We develop an

algorithm that we use to establish new and improved lower bounds on the size of some extremal

graphs and determine the exact size of the extremal graphs for some particular parameters.

A graph is connected if there is a path, consisting of nodes and links, between any two nodes in

the graph. The ability to send and receive email via the Internet is dependent upon the Internet

being connected, that is, there is a path of computers and connections between the sender and

receiver of the email. The connectivity of a network is the number of nodes or links that must

be removed in order to partition the network into two or more components. High connectivity

of a network corresponds to the properties of fault tolerance and resilience under attack. In

this thesis we determine a number of sufficient conditions that ensure good connectivity of a

network.
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Where’s the orchestra?

After all, this is my big night on

the town

My introduction...

Billy Joel 1
Introduction

In this chapter we provide some background to the field of graph theory and describe some

applications that serve as a motivation for our research. In Sections 1.2 and 1.3, we introduce

the two research areas of graph theory which are central to this thesis, namely, extremal graph

theory and connectivity. In Section 1.4, we give a synopsis of the structure of the thesis including

a summary of the main results.

1.1 Background

Graph theory is a research area in the disciplines of mathematics and computer science. A graph

is a mathematical structure used to model pairwise relations between objects from a certain

collection. The objects are called vertices and the relationships are called edges. When graphs

are used to model computer networks, the vertices may be referred to as nodes, and the terms

links or connections may be used interchangeably with edges. Likewise, the term network is

often used in place of the term graph.

Although the first book written on graph theory “Theorie der endlichen und unendlichen

Graphen” [83] did not appear until 1936, two-hundred years after Euler’s solution to the

Königsberg bridge problem, the applications of graph theory were already remarkably diverse;

for example, in 1875, Cayley [38] wrote about the application of the graph theoretic problem of

graph enumeration in particular, tree enumeration, to molecular chemistry. Equally remarkable

is the number of famous graph theory problems that have no real world application.

Today, graph theory is a vibrant field of research with remarkably diverse applications. Graph

theory has applications in medical, biological, epidemiology [39], conservation [29, 69], socio-

logical [109] and technological research [72] as well as molecular chemistry [38]. Graphs are

used to model and investigate the topologies of various networks. Examples include: social net-

works like Facebook [60] and Google + [79]; technical networks including VLSI (very large scale

1
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integrated circuits) of multiprocessors and the Internet; transport networks; distribution net-

works, such as blood vessels or postal delivery routes; and collaboration networks; for example,

LinkedIn [96].

In this thesis we consider questions in two separate but related research areas in the field of

graph theory, namely, extremal graph theory and connectivity. The questions that we consider

have real world applications in the design and investigation of efficient, reliable, fault tolerant

networks. In spite of that, we believe that these questions are worthy of investigation purely

based on their mathematical merit.

The efficiency of a network can be measured in terms of the cost, or time needed to transmit a

message. One measure of network efficiency is the distance (length of a shortest path) between

all pairs of nodes in the network. Minimising the distance between vertex pairs reduces the

time taken to transmit a message. One distance based parameter is the diameter, that is, the

largest distance between any two vertices in the graph.

Another property of a network is reliability or fault tolerance. This property corresponds to

being able to transmit data in a network even when some components fail. An example of fault

tolerance is the ability to reroute an email when a mail server or satellite link is down. Fault

tolerance of an air traffic network may be considered as the ability to reach your destination

via an alternate airport or series of airports if one is closed due to volcanic ash, for example.

A network in which every node is linked to every other node has the best possible fault tolerance

and efficiency but in the real world physical, geographical, political, logistical and economic

constraints make it impossible, or at least highly impractical, to build such networks. However,

it is desirable for a network to accommodate a large number of components while maintaining

a low communication latency and good fault tolerance. In this thesis we consider a class

of extremal graphs that fulfil these requirements. Furthermore, we determine a number of

constraints that can be used to determine the fault tolerance of a graph in terms of connectivity.

1.2 Extremal Graph Theory

Extremal graph theory is the study of graphs that are extremal, that is, maximal or minimal,

under some given constraints. Extremality can be taken with respect to different graph invari-

ants, such as order, size, diameter, girth, connectivity, and maximum and minimum degree. In

1975, Erdős posed the problem of finding the maximum size of graphs that do not contain three-

cycles or four-cycles. In this thesis, we examine a generalised version of this problem, namely,

given parameters n and t, determine the maximum possible number of edges in a graph on n

vertices that does not contain any cycles of length t or less as a subgraph. We use the term

extremal number to indicate this value. Graphs having size equal to the extremal number are

called extremal graphs.
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Our interest in extremal graphs stems from the conviction that these graphs have the topology

of a network that is both efficient and fault tolerant. It turns out that an extremal graph

that does not contain any cycles of length t or less is necessarily of diameter less than t. This

constraint on the diameter ensures small latency for message transmission. Evidence that the

reliability of a network is enhanced when the smallest cycle in a graph is larger [98] prompted

us to consider extremal graphs for larger values of t.

In this thesis we construct nine infinite families of graphs, which we prove to be extremal.

Consequently, we establish two infinite series of previously unknown extremal numbers. Fur-

thermore, we developed an algorithm which we use to find new and improved lower bounds

on the extremal number ex(n; t), for t = 4, 5, . . . , 11 and n ≤ 200. We also find the extremal

number and some corresponding extremal graphs for some specific values of n and t.

1.3 Connectivity

The research area of connectivity is considered to have started, in 1927, with Menger’s theorem

(see Section 3.3). Connectivity is a fundamental property of graphs. A graph is connected if

there is a path, consisting of nodes and links, between any two nodes in the graph. When

considering the Internet, the property of being connected corresponds to being able to send

email between any two people who are accessing the Internet.

Given a connected graph, the connectivity of the graph is the equal to cardinality of the minimum

set of nodes (vertex cut) that must be destroyed or removed in order that the graph is no longer

connected. In general, a graph with high connectivity is more robust against attacks or faults

than a graph with low connectivity. A graph is superconnected if all minimum vertex cuts are

trivial, that is, result in one of the components being an isolated node.

Connectivity has obvious applications to large scale complex networks in computer science.

Other applications can be found in epidemiology, where removal of vertices in a contact network

might correspond to vaccination of individuals against a disease [39]. The rezoning of Australia’s

Great Barrier Reef for marine conservation was determined using a graph-theoretic approach

taking into account the connectivity of different populations by means of ocean currents [29,69].

In this thesis we determine a number of structural properties of a graph that ensure good

connectivity.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows.
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Chapter 2: Definitions and Notation. In this chapter, we introduce the graph theoretic

notation and terminology that will be used throughout the thesis.

Chapter 3: Literature Review. In this chapter, we provide an historical overview of some

results in the areas of extremal graph theory and connectivity. The purpose of this chapter is

not to provide an exhaustive list of known results but rather to furnish the background required

for the presentation of our results in Chapters 4, 5 and 6.

Chapter 4: Extremal Graphs. Our new results in the area of extremal graphs are presented

in this chapter. More precisely, we describe our “Growing and Pruning” algorithm which we

use to create new lower bounds on ex(n; t), for t = 4, 5, . . . , 11 and n ≤ 200. Note that,

for t = 4 and t = 6, many of these new lower bounds are improvements on the best known

lower bounds on ex(n; t) that were recently published by Abajo and Diánez [2] and Abajo,

Balbuena and Diánez [1]. Moreover, we show that a number of graphs when subdivided form

infinite families of extremal graphs, namely, the complete graphs K2, K3 and K4, the complete

bipartite graphsK2,3, K3,3, K3,4, the Petersen graph, the Heawood graph and the Tutte-Coxeter

cage. Additionally, we establish the exact values of the previously unknown extremal numbers:

ex(n; 6), for n = 30, 31, 32; ex(n; 8), for n = 23, 24, 25, 26; ex(n; 9), for n = 26, 27, 28, 29; and

ex(127; 11). Some of these results have been accepted for publication [103]. The remaining

material is being prepared for submission.

Chapter 5: Connectivity. In this chapter, we improve upon a result by Balbuena and

Marcote [18] by showing that any graph G is 2-connected if diameter D ≤ g − 1 for even girth

g, and for odd girth g and maximum degree ∆ ≤ 2δ − 1, where δ is the minimum degree.

Furthermore, we extend the results of Balbuena, Carmona, Fàbrega and Fiol [11], by proving

that any graph G of diameter D ≤ g − 2 is 5-connected for even girth g and ∆ ≤ 2δ − 1. This

material has been published in [19].

Chapter 6: Superconnectivity. In this chapter, we improve known results by Fàbrega and

Fiol [58] on the superconnectivity of a graph. We prove that an r-regular graph with odd girth

g, r ≥ 3 and diameter D ≤ g − 2 is super-κ. Furthermore, we extend these results by showing

that non regular graphs with odd girth g and diameter D ≤ g − 2, minimum degree δ ≥ 3 and

maximum degree ∆ ≤ 3δ/2− 1, are super-κ. This work has been published in [19] and [20].

Chapter 7: Conclusion. In this chapter, we summarise the main results of the thesis and

present some open problems for future research.

The main contributions of this thesis are contained in Chapters 4, 5 and 6. All original results

are indicated by the symbol ♦ and ends of proofs are marked by the symbol .



In most sciences one generation

tears down what another has built

and what one has established an-

other undoes. In mathematics

alone each generations adds a new

story to the old structure.

Hermann Hankel 2
Definitions and Notation

In this chapter we establish the terminology, definitions and notation that will be used through-

out this thesis. Terminology and notation specific only to a particular chapter will be defined

therein. In general we follow the notation used by Chartrand, Lesniak and Zhang in [41].

2.1 Basic Concepts

A graph is an ordered pair of sets (V,E) = (V (G), E(G)), where V = V (G) is nonempty, and

E = E(G) is a set of unordered pairs of elements of V (G). The elements of V (G) are called

the vertices of G and the elements of E(G) are called the edges of G. When graphs are used

to model computer networks, the vertices may be referred to as nodes and the terms links or

connections may be used interchangeably with edges.

x2x1

x6

x5 x4

x3

x8

x9x10

x7

Figure 2.1: A graph G.
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6 2. Definitions and Notation

The order of a graph G is the number of vertices in G, denoted n = n(G) = |V (G)|, and the

number of edges in G is referred to as the size of G, denoted m = m(G) = |E(G)|. The graph

G drawn in Figure 2.1 has vertex set V = {x1, x2, . . . , x10}, edge set E = {x1x2, x1x6, x1x7,

x2x3, x2x8, x3x4, x3x8, x4x5, x4x9, x5x6, x5x9, x6x10, x7x8, x7x10, x9x10}, order n = |V (G)| =

10, and size m = |E(G)| = 15.

If u and v are vertices of a graph G, and there exists an edge e = uv, then we say that the edge

e joins the vertices u and v, alternatively, we say that u is adjacent to v. The vertices u and v

are said to be incident with the edge e and the vertices u and v are called the endpoints of e.

If two vertices are incident with more than one edge then we call these edges multiple edges

or multiedges, and the graph is called a multigraph. An edge that is incident with only one

vertex twice is called a loop and a graph that may contain loops is referred to as a pseudograph.

Graphs without loops and multiple edges are called simple graphs. Multigraphs can be used

to model network properties, for example, redundancy. However, in this thesis, we restrict our

research to simple, finite graphs, that is, graphs on a finite number of vertices, without loops

and/or multiple edges.

We say that u is a neighbour of v and the set of all neighbours of v is called the neighbourhood of

v, denoted N1(v) or N(v), for example, the vertices x1 and x3 from the graph G shown in Figure

2.1, have the neighbourhoods N(x1) = {x2, x6, x7} and N(x3) = {x2, x4, x8}, respectively.

The distance d(u, v) between two vertices u and v in G is the length of a shortest path between

u and v. The eccentricity of a vertex, denoted e(v), in a graph G, is the distance from v to a

vertex in G that is furthest from v, that is, e(v) = max{d(v, u)|u ∈ V (G)}. The diameter of a

graph G, written D = diam(G) = D(G), is the maximum eccentricity of all the vertices of G,

that is, diam(G) = max{e(v)|v ∈ V (G)}. The radius of G, denoted rad(G), is the minimum

eccentricity of any vertex in G, that is, rad(G) = min{e(v)|v ∈ V (G)}.

For S ⊂ V , d(v, S) = dG(v, S) = min{d(v, s) : s ∈ S} denotes the distance between a vertex v

and a set S. For every v ∈ V and every positive integer r ≥ 0, Nr(v) = {u ∈ V : d(u, v) = r}
denotes the neighbourhood of v at distance r. Similarly, for S ⊂ V , the neighbourhood of S at

distance r is denoted Nr(S) = {v ∈ V : d(v, S) = r}. Observe that N0(S) = S. When r = 1

we write N(v) and N(S), instead of N1(v) and N1(S).

The degree of a vertex v, denoted deg(v), is the number of edges incident with v; it is the

cardinality of the neighbourhood of v, that is, deg(v) = |N(v)|. An isolated vertex is a vertex

that has no neighbours and a vertex having only one neighbour is called a pendant vertex. The

maximum degree of G, denoted ∆ = ∆(G), is the maximum degree over all the vertices of

G. Similarly, the minimum degree of G, denoted δ = δ(G), is the minimum degree over all

the vertices of G. If all vertices of G have the same degree r, then G is said to be regular

of degree r or r-regular. A 3-regular graph is said to be cubic or trivalent. The graph G in

Figure 2.1 is a trivalent graph. The degree sequence of a graph G, denoted D = D(G), is
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the non-increasing sequence of its vertex degrees, that is, D = (deg(v1), deg(v2), . . . , deg(vn)).

Since 0 ≤ deg(v) ≤ n − 1 if there are n vertices in the largest connected component then, by

pigeonhole principle, at least one degree occurs more than once. Let d1, d2, . . . , dt be the vertex

degrees in G, in descending order, and suppose degree di occurs xi times in G. Then we use the

more concise notation D = (dx1
1 , dx2

2 , . . . , dxtt ). The degree sequence for the graph G in Figure

2.1 is D = (310) and the graph G in Figure 2.2 has degree sequence D = (34, 21, 12).

A graph S is a subgraph of G if V (S) ⊆ V (G) and E(S) ⊆ E(G). If V (S) = V (G) then S

is a spanning subgraph of G. If V (S) ( V (G), then S is a called a proper subgraph of G. If

V (S) ⊂ V (G) then G[S] denotes the subgraph induced by the vertex set V (S) of V (G). The

graph in Figure 2.2 is the subgraph induced by the vertex set V (S) = {x3, x4, x5, x6, x7, x9, x10}
of the graph G in Figure 2.1. The degree of a vertex v restricted to the induced subgraph S of

G is denoted by degS(v) = |N(v) ∩ V (S)|, for example, the vertex x3 in the graph G of Figure

2.1 has deg(x3) = 3, and degS(x3) = 1 in the subgraph shown in Figure 2.2.

x6 x3

x9x10

x7

x5 x4

Figure 2.2: A subgraph S of the graph G in Figure 2.1.

The edge-degree of an edge uv is defined as deg(uv) = deg(u) +deg(v)−2. The minimum edge-

degree of G, denoted by ξ = ξ(G), is defined as ξ(G) = min{deg(u) + deg(v)− 2 : uv ∈ E(G)}.

A walk W = v0, v0v1, v1, v1v2, v2, . . . vn−1, vn−1vn, vn in a graph is an alternating sequence of

vertices and edges. W is also referred to as a v0-vn walk of length n since it contains n edges. A

walk of length n in which no edges are repeated is called a trail. A walk in which no vertices are

repeated is called a path, denoted Pn. We call v0 and vn the end vertices of the path, and we say

the vertices v0 and vn are connected by the path Pn. For convenience we may refer to a path by its

end vertices, and use the notation v0vnpath to refer to a path between v0 and vn. The graph in

Figure 2.1 contains the walk of length 5, W = x1, x1x2, x2, x2x8, x8, x8x7, x7, x7x1, x1, x1x2, x2,

the trail T = x1, x1x2, x2, x2x8, x8, x8x7, x7, x7x1, x1 and the path P4 = x1, x2, x8, x7.

A Hamiltonian path, also called a Hamilton path, is a path between two vertices of a graph G

that visits each vertex of G exactly once. A Hamiltonian path that is also a cycle is called a

Hamiltonian circuit or Hamiltonian cycle. A graph possessing a Hamiltonian circuit is said to

be a Hamiltonian graph.
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2.2 Families of Graphs

A cycle of length n, written Cn, is a graph with n vertices v1, v2, ..., vn and n edges v1v2, v2v3, ..., vnv1.

The length of a cycle is equal to the number of vertices or, equivalently, edges in the cycle. A

cycle of length three is frequently referred to as a triangle. The girth of a graph G, denoted

by g = g(G), is the length of a shortest cycle in G; the length of a longest cycle in G is its

circumference. A cycle having length equal to the girth is called a girth cycle. The girth of any

complete graph Kn is 3 and the circumference is n. If G does not contain a cycle then G is said

to be acyclic and the girth is considered to be 0 and the circumference ∞.

Figure 2.3: The cycle C7 and the complete bipartite graph K1,7.

An acyclic connected graph is called a tree, T . Vertices in the tree having degree 1 are called

leaves. A vertex of T may be distinguished by being called the root in which case the height of

the tree is defined as the maximum distance between the root and any leaf of the tree. Every

connected graph G has a spanning tree, that is, a subgraph T such that V (T ) = V (G). The

number m− (n− 1) = m− n+ 1 is referred to as the cycle rank of G.

The complete graph Kn is the graph on n vertices, where every vertex is adjacent to every other

vertex, for example, Figure 2.4 contains drawings of the complete graphs K7 and K8. The

complete graph Kn is regular of degree n − 1, that is, D = ((n − 1)n) has |E(Kn)| =
(
n
2

)
=

n(n− 1)/2 edges. A proper subgraph which is a complete graph is called a clique.

Figure 2.4: The complete graphs K7 and K8.

Another often studied class of graphs are the bipartite graphs. A graph G = (V (G), E(G)) is

bipartite if the vertex set V (G) can be partitioned into two subsets of vertices, V (U) and V (W ),

such that every edge uw ∈ E(G) has u ∈ V (U) and w ∈ V (W ). The complete bipartite graph,
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denoted Km,n, is the graph on the union of the two disjoint sets of vertices V (M) and V (N),

where m = |V (M)| and n = |V (N)|, with every vertex in M adjacent to every vertex in N , and

no two vertices in the same set adjacent to each other. The complete bipartite graph K1,n−1

is also known as the star on n vertices, denoted Sn. The complete bipartite graph K1,7 or S8

star is shown in Figure 2.3. Figure 2.5, contains drawings of the complete bipartite graph K4,5

and two different spanning trees of K4,5.

Figure 2.5: The complete bipartite graph K4,5 and two different spanning trees of K4,5.

The definition of complete bipartite graphs can naturally be extended to encompass complete

k-partite graphs. A complete k-partite graph, denoted Kn1,n2,n3,...,nk is a graph of order n ≥ 3,

where the vertices are partitioned into k ≤ n sets of vertices. Edges exist between every pair

of vertices that are in different partite sets and there are no edges between vertices in the same

partite set. The complete k-partite graph with each vertex set having either bn/kc or dn/ke
vertices is known as the Turán graph, denoted, Tn,k.

Another interesting class of graphs are the (k, g)-graphs which are k-regular graphs of girth g.

In 1947, Tutte studied (3, g)-graphs and introduced the term “cage” to describe a (3, g)-graph

with minimal order. The (3,5)-cage is the Petersen graph which is shown in Figure 2.8. The

(3,6), (3,7) and (3,8)-cages, shown in Figure 2.6, are also known, respectively, as the Heawood

graph, McGee graph and Tutte-Coxeter graph. The study of cages has since been generalised

to include regular graphs with k > 3. More formally, an (k, g)-graph with minimum order

for particular values of k and g is called a (k, g)-cage. The (7,5)-cage is also known as the

Hoffman-Singleton graph.

Figure 2.6: The Heawood graph, McGee graph and Tutte-Coxeter graph.
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A finite projective plane consists of a finite set of lines and a finite set of points, and a relation

between points and lines called an incidence relation, having the following properties:

• Given any two distinct points, there is exactly one line incident with the two points.

• Given any two distinct lines, there is exactly one point incident with the two lines.

• There are four points such that no line is incident with more than two of these points.

A finite projective plane has n2 + n + 1 points and n2 + n + 1 lines, each line contains n + 1

points and every point has n+ 1 lines passing through it, where n is an integer called the order

of the projective plane.

Let P be a finite projective plane, we define a polarity of P , denoted π, to be a one-to-one

mapping of points onto lines such that q ∈ π(p) whenever p ∈ π(q). A polarity graph G(P, π),

defined by Erdős and Rényi [49], is a graph whose vertex set is the set of points of P and whose

edge set is {pq : p ∈ π(q), p 6= q}. A polarity graph of a finite projective plane has diameter 2,

no three or four cycles and order n2 + n+ 1, where n is the order of the projective plane.

The term generalised polygon, also known as a generalised D-gon, was introduced by Tits [120] in

1974. In order to define generalised polygons we first introduce the terms “incidence structure”

and “incidence graph”. An incidence structure is an ordered triple I= (P,L, I), where P 6= ∅
is a set of points, L 6= ∅ is a set of lines, and I ⊆ P × L is the point-line relation, called the

incidence relation. Given an incidence structure I, if each line is incident with exactly s + 1

points, and each point is incident with exactly t + 1 lines, we say that I has order (s, t). If

s = t then I is said to have order s. The incidence graph of I, denoted G(I), is the graph with

vertex set V (G(I)) = P ∪ L with edge set E(G(I)) = (p, l) ∈ I, where p ∈ P and l ∈ L. A

generalised polygon is an incidence structure I= (P,L, I), such that,

• I has order (s, t), where s ≥ 1 and t ≥ 1

• Any two distinct lines intersect in at most one point

• There is at most one line through any two distinct points

• The incidence graph G(I) is a bipartite graph of diameter D and girth 2D

The incidence graph of a generalised digon (D = 2) is the complete bipartite graph Ks+1,t+1.

For D ≥ 3 and s = t = 1 we obtain the ordinary two-dimensional polygons with D sides. Feit

and Higman [61] established the non-existence of certain generalised polygons, asserting that

for s > 1 and t > 1 generalised polygons exist only when D = 2, 3, 4, 6 or 8.

A generalised triangle of order s > 1, is a projective plane of order s. To date projective planes

of order s are known to exist only when s is a prime power. Figure 2.7 contains a generalised

triangle or projective plane and the incidence graph of the generalised triangle, which in this

case is the Heawood graph or (3,6)-cage.
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Figure 2.7: A generalised triangle, I, and the incidence graph G(I).

2.3 Operations on Graphs

The union of G and G′, denoted by G∪G′, is the graph with vertex set V (G)∪V (G′) and edge

set E(G) ∪ E(G′). The intersection of G and G′, denoted by G ∩G′, is the graph with vertex

set V (G) ∩ V (G′) and edge set E(G) ∩ E(G′). The difference between G and G′, denoted by

G−G′, is the graph with vertex set V (G)− V (G′) and edge set formed by all the edges of G

with both end vertices in V (G)− V (G′).

Removing a vertex, or vertex removal, is the operation that deletes a vertex and all its incident

edges from the graph. Removing an edge, or edge removal, is the operation that deletes an

edge from the graph. Edge contraction is the operation that removes an edge e = uv and

then combines the two vertices u and v into a single vertex that is adjacent to all the former

neighbours of u and v. A minor of a graph G is a graph that can be obtained by applying to

G the operations of edge deletion, edge contraction or vertex deletion.

Given a graph G, subdividing an edge uv ∈ E(G) by i results in a graph G′ with vertex set

V (G′) = V (G)∪{x1, x2, . . . , xi} and edge set E(G′) = {E(G)−{uv}}∪{{ux1}, {x1x2}, . . . , {xiv}}.
Given a graph G of order n, size m, and girth g, subdividing the graph G by i is the operation of

subdividing every edge in G. The resulting graph, denoted siG, has order n+mi, size m(1 + i)

and girth g(1 + i), for example, the subdivided Petersen graph is shown in Figure 2.8.

The complement of a graph G, denoted G, is the graph with the same vertex set as G, whose

edge set consists of the edges that are not present in G, for example, the complement of the

complete graph K7 is a graph having 7 vertices and no edges, the complement of the complete

bipartite graph K3,4 is the disjoint union of K3 and K4 and the complement of the complete

multi-partite graph K5,5,6 consists of the complete graphs K5, K5 and K6.
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Figure 2.8: The Petersen graph P and the subdivided Petersen graph s1P .

Two graphs G1 and G2 having the same order n are said to be isomorphic or identical under

isomorphism if there is a one-to-one mapping f of the vertices V (G1) to the vertices V (G2)

such that v1 and u1 are adjacent in G1 if and only if the vertices f(v2) and f(u2) are adjacent

in G2.

2.4 Extremal Graph Theory

Extremal graph theory is the study of graphs that are extremal, that is, maximal or minimal,

under some given constraints. Extremality can be taken with respect to different graph invari-

ants, such as order, size, diameter, girth, connectivity, maximum and minimum degree. More

abstractly, it is the study of how global properties of a graph influence local substructures of

the graph.

In 1941 Turán, [46] asked: “How many edges must a graph contain that it should certainly have

subgraphs of a prescribed structure?”. Alternatively, what is the maximum size of a graph G

having order n and the property that if F ∈ F then F 6⊆ G. The answer to this question is

called the extremal number, denoted ex(n;F), and graphs with property F that have size equal

to the extremal number are said to be extremal graphs, denoted EX(n;F). Research concerned

with this question is referred to as extremal graph theory.

In 1975, Erdős posed the problem of finding the maximum size of a graph on n vertices that does

not contain three-cycles or four-cycles. In this thesis we examine a generalised version of this

problem, namely, finding the maximum number of edges in a graph of order n that contains no

cycle Ck, where k ≤ t and t ≥ 3. We use the notation ex(n; t) = ex(n; {C3, C4, . . . , Ct}) and the

term extremal number to indicate this value. Graphs having size equal to the extremal number

are called extremal {C3, C4, . . . , Ct}-free graphs or just extremal graphs when the context is

understood. For given values of n and t the set of extremal graphs is denoted EX(n; t) =

EX(n; {C3, C4, . . . , Ct}).
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2.5 Connectivity

In this section we introduce definitions, notation and terminology that will be used to explain

our results in connectivity.

A graph G is connected if there is a path between each pair of vertices in G, and is disconnected

otherwise. The graph in Figure 2.9 is connected. Every disconnected graph can be split up into

a number of maximal connected subgraphs, called components.

x2

x3

x4

x5

x6

x7

x1

x9

x8

x10

x11

x12

x13

x14

x15

Figure 2.9: A connected graph.

In a connected graph, two or more uv-paths are edge disjoint if they have no edges in common,

and vertex disjoint if they have no vertices in common apart from u and v. Certain vertices

are said to separate u from v if the removal of these vertices destroys all paths between u and

v. Similarly, certain edges separate u from v if the removal of these edges destroys all paths

between u and v. The paths x15x3x5 and x15x14x13x12x3x8x7x6x5 in Figure 2.9 are edge

disjoint but not vertex disjoint. The paths x10x1x4 and x10x11x2x9x4 in Figure 2.9 are both

edge and vertex disjoint.

A vertex x is said to be a cut vertex of a graph G if removing x disconnects the graph. In this

case there must be two vertices u and v such that x lies on every uv path in G. Similarly, an

edge e in a connected graph G, whose removal disconnects the graph is called a bridge. Again,

there must be two vertices u and v such that e lies on every uv path in G. A necessary and

sufficient condition for an edge to be a bridge is that the edge lies on no cycle. Therefore, every

edge of an acyclic connected graph is a bridge.

If G is a connected graph and X ⊂ V (G) such that G−X is not connected, then X is said to be

a vertex cut or a disconnecting set of G. Analogously, if F ⊂ E(G) and G−F is not connected,

then F is said to be an edge cut or an edge disconnecting set, for example, the graph in Figure 2.9

has a cut set X = {x2, x3, x10, x13} and an edge disconnecting set F = {x2x6, x3x5, x4x5, x6x7}.

We say that G is r-connected if the deletion of at least r vertices of G is required to disconnect

the graph. The vertex connectivity, denoted κ = κ(G), or edge connectivity, written λ = λ(G),
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of a connected graph G is the smallest number of vertices, respectively edges, whose removal

disconnects G. More formally,

κ = min{|X| : X ⊆ V (G) and ω(G−X) > 1},

λ = min{|F | : F ⊆ E(G) and ω(G− F ) > 1},

where ω(G −X) and ω(G − F ) are the number of components of the graph obtained from G

by removing the vertices of X, respectively edges of F . For a number of classes of graphs the

vertex and edge connectivity has been defined or determined, for example: κ(Kn) = n−1 or∞,

λ(Kn) = n− 1, κ(Cn) = 2, λ(Cn) = 2, κ(Pn) = 1, λ(Pn) = 1, the vertex and edge connectivity

of a tree is also 1. The graph in Figure 2.9 has vertex connectivity, κ = 3 and edge connectivity

λ = 3.

There is an intrinsic relationship between the minimum degree, the edge connectivity and the

vertex connectivity of a graph. Given a vertex v ∈ G, such that deg(v) = δ, removing the set

of all vertices that are neighbours of v, or alternatively the set of edges that are incident to v,

necessarily disconnects the graph into at least two components one of which is the vertex v.

This relationship between the vertex connectivity, edge connectivity and minimum degree, was

first observed by Whitney [124] and can be stated κ ≤ λ ≤ δ. The fact that the inequalities

can be equalities is demonstrated by the cut set X = {x1, x5, x9} and the edge cut set F =

{x4x1, x4x5, x4x9} of the graph in Figure 2.9. The removal of these sets disconnects the graph

into two components one of which is the isolated vertex x4. A vertex cut (edge cut) whose

removal results in two components one of which is an isolated vertex is called trivial vertex cut

(trivial edge cut ).

A graph G is said to have maximum edge connectivity if λ = δ and maximum vertex connectivity

when κ = λ = δ. A graph with maximum vertex connectivity is said to be maximally connected.

The graph in Figure 2.9 is maximally connected.

Due to the fact that the minimum degree of a graph is less than or equal to the average degree,

we can extend Whitney’s [124] observation as follows, κ ≤ λ ≤ δ ≤ 2m/n, where n and m are,

respectively, the order and the size of the graph, and 2m/n represents the average of the vertex

degree. A graph for which these inequalities are equalities is said to have optimal connectivity.

To show that a graph has optimal connectivity, it is sufficient to show that κ = 2n/m. By

definition, for a graph to be optimally connected it must be degree regular.
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In this chapter, we provide an historical overview of some important results in the research

areas of extremal graph theory and connectivity. The purpose of this chapter is not to give

an exhaustive list of results but rather to provide the background required to frame our new

results which are presented in Chapters 4, 5 and 6.

In Section 3.1, we introduce two extremal graph theory problems concerned with the order of

a graph. Firstly, determining the maximum possible order of a graph given constraints on the

maximum degree and the diameter of the graph. Secondly, determining the minimum possible

order of a degree regular graph with a prescribed girth. We also discuss some generalisations

of these two problems.

In Section 3.2, we discuss a number of extremal graph theory problems, where the goal is to find

the maximum possible number of edges in a graph that does not contain a certain subgraph.

In particular, we introduce a problem which is central to the thesis, namely, determining the

maximum possible size of a graph that does not contain any cycles of length t or less as a

subgraph. This question is more thoroughly dealt with in Chapter 4, where we present some of

our new results concerning extremal graphs.

In Section 3.3, we present historical results in the area of connectivity. In particular, a number of

theorems that enable us to determine the minimum connectivity of a graph G using knowledge

of the girth and diameter of G. We improve on some of these results in Chapters 5 and 6.

3.1 Graphs with Maximal/Minimal Order

In this section, we examine two well known extremal graph theory problems regarding the

order of a graph. In Section 3.1.1, we begin with the degree/diameter problem, where the

goal is to find the maximum possible number of vertices in a graph given constraints on the

15
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maximum degree and diameter. Furthermore, we illustrate a natural upper bound, known as

the Moore bound, for this problem. Furthermore, we summarise current known results on

the existence of graphs that attain the Moore bound and discuss some generalisations of the

degree/diameter problem. We also include a generalisation of the degree/diameter problem,

namely, the degree/diameter problem for bipartite graphs and summarise results in this area

of research which will be relevant later in the thesis.

In Section 3.1.2, we state the degree/girth problem, where the goal is to find the minimum

possible order of a degree regular graph with prescribed girth. We also discuss some variations

of the degree/girth problem.

3.1.1 The Degree/Diameter Problem

Most of the material presented in this section is from the survey of the degree/diameter prob-

lem by Miller and Širáň [106]. The degree/diameter problem has also been considered for

restricted families of graphs including vertex transitive, planar and bipartite graphs. For a

more comprehensive review of the degree/diameter problem including: generalisations of the

degree/diameter problem; construction techniques used to create large graphs; and a number

of open problems for consideration, we recommend this survey.

The degree/diameter problem can be stated:

Degree/diameter problem: Given natural numbers ∆ ≥ 2 and D ≥ 1, find the largest

possible number n∆,D of vertices in a graph of maximum degree ∆ and diameter

≤ D.

The application of this problem to network design is obvious. The limitations on the degree

correspond to physical limits on the number of connections that a component in the network

can have, for example, the network may contain routers that have a limited number of ports.

The limit on the diameter indicates the largest number of links that must be traversed in order

to transmit a message between any two nodes, which is a measure of network efficiency.

A graph with maximum degree ∆ and diameter D is called a (∆, D)-graph. A natural upper

bound on n∆,D can be determined by counting the maximum possible number of neighbours

of a vertex in r ∈ G at distance less than or equal to the diameter, that is, counting |Ni(r)|
for 0 ≤ i ≤ D, as illustrated in Figure 3.1. This upper bound is known as the Moore bound,

denoted M∆,D and a graph whose order is equal to the Moore bound is called a Moore graph.
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Figure 3.1: Illustration of Moore bound.

M∆,D = 1 + ∆ + ∆(∆− 1) + . . .+ ∆(∆− 1)D−1

=

{
1 + ∆ (∆−1)D−1

∆−2 if ∆ > 2

2D + 1 if ∆ = 2
(3.1)

Moore Graphs

The term Moore graph was introduced by Hoffman and Singleton [78], in 1960. In 1968,

Singleton [115] proved that there is no irregular Moore graph. In other words, a graph that

attains the Moore bound must be degree regular. Furthermore, by considering the illustration

of the Moore bound in Figure 3.1 it is easy to determine that a graph that attains the Moore

bound must have diameter D and odd girth g = 2D + 1.

The complete graphs K∆+1 are Moore graphs, for diameter D = 1. The cycles of odd length

C2D+1 are Moore graphs, for maximum degree ∆ = 2 and diameter D ≥ 2. The existence of

Moore graphs of diameter 2 and 3 was considered by Hoffman and Singleton [78], who proved

that for D = 2 Moore graphs exist for ∆ = 2, 3, 7 and possibly 57, but not for any other degrees.

Furthermore, they showed that for D = 2 and ∆ = 3 the Petersen graph is the only graph that

obtains the Moore bound. Similarly, for D = 2 and ∆ = 7 the Hoffman-Singleton graph is

the unique Moore graph. In 1973, Damerall [42], and independently, Bannai and Ito [22], used

eigenvalue techniques to prove the non-existence of Moore graphs for ∆ ≥ 3 and D ≥ 3.
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Due to the scarcity of Moore graphs, research on the degree/diameter problem is focused on

finding large graphs that are in some way “close” to the Moore bound, that is, graphs of order

M∆,D − ε. The parameter ε is called the defect. Such a graph is called a (∆, D,−ε)-graph or

Moore graph of defect ε.

Erdős, Fajtlowicz and Hoffman determined that the cycle C4 is the only (∆, 2,−1)-graph, that

is, the only Moore graph of defect 1, diameter 2, maximum degree ∆. Bannai and Ito [21] and,

independently, Kurosawa and Tsujii [86] generalised this result to include all diameters and

showed that, with the exception of the even cycles C2D, Moore graphs of defect 1 do not exist.

Research activities related to the degree/diameter problem include the construction of graphs

that improve the best current known lower bounds and providing non-existence proofs of graphs

of order close to the established upper bounds. Finding solutions to the degree/diameter prob-

lem for particular values of ∆ and D is known to be difficult. After over 50 years of research,

the question of the existence of a Moore graph of diameter 2 and degree 57 remains unanswered.

Even the question on monotonicity of n∆,D in ∆ and/or D is still an open problem [106].

The Degree/Diameter Problem for Bipartite Graphs

In this section we introduce the degree/diameter problem for bipartite graphs and summarise

current known results.

The degree/diameter problem for bipartite graphs can be stated:

Degree/diameter problem for bipartite graphs: Given natural numbers ∆ ≥ 2 and

D ≥ 2, find the largest possible number nb∆,D of vertices in a bipartite graph of

maximum degree ∆ and diameter ≤ D.

A natural upper bound for nb∆,D can be determined by counting the number of neighbours of

an edge e ∈ G at distance less than or equal to the diameter, as illustrated in Figure 3.2. This

bound is called the Moore bipartite bound, denoted, M b
∆,D. A bipartite graph of maximum

degree ∆, diameter D and order equal to the Moore bipartite bound, is called a Moore bipartite

graph. Such a graph is necessarily regular of degree ∆ and has even girth 2D.

M b
∆,D = 2(1 + (∆− 1) + . . .+ ∆(∆− 1)D−1)

=

{
2 (∆−1)D−1

∆−2 if ∆ > 2

2D if ∆ = 2
(3.2)

For maximum degree ∆ = 2 and diameter D ≥ 2, the Moore bipartite graphs are the even cycles

on 2D vertices. For diameter D = 2 and each ∆ ≥ 3, the Moore bipartite graphs of degree ∆ are
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Figure 3.2: Illustration of bipartite Moore bound.

the complete bipartite graphs K∆,∆. For maximum degree ∆ ≥ 3, the rarity of Moore bipartite

graphs was settled by Feit and Higman in their paper titled “The non-existence of certain

generalized polygons” [59] which was published in 1964, and independently, by Singleton [114]

in 1966. They proved that such graphs exist only if the diameter is 2,3,4 or 6. For D = 3, 4, 6

Moore bipartite graphs of degree ∆ have been constructed only when ∆−1 is a prime power [24].

Furthermore, Singleton [114] proved that the existence of a Moore bipartite graph of diameter

3 is equivalent to the existence of a projective plane of order ∆− 1.

Tables of the current best known upper bounds for the degree/diameter problem (including

the degree/diameter problem for a number of restricted classes of graphs) are published on a

section of the Combinatorics wiki website which is maintained by Loz, Pérez-Rosés and Pineda-

Villavicencio [97].

3.1.2 The Degree/Girth Problem

In this section we draw extensively from the state-of-the-art dynamic cage survey by Exoo and

Jajcay [56]. The survey includes all known cages, the best known upper bounds on the order

of cages, construction techniques used to obtain these graphs and a number of open problems

for consideration. We recommend this survey to any reader interested in a more comprehensive

review of the degree/girth problem.
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The degree/girth problem can be stated as:

Degree/girth problem: Given natural numbers k ≥ 2 and g ≥ 3, find the least

possible number n(k, g) of vertices in a k-regular graph with girth g.

We use the notation (k, g)-graph to mean a k-regular graph with girth g. A (k, g)-graph having

the least possible order is called a (k, g)-cage.

Cages

Recalling from Chapter 2, the term (k, g)-cage was originally introduced by Tutte [121] in 1947

to refer to a (3, g)-graph with the least possible number of vertices. The term “cage” was later

generalised to include regular graphs with k > 3. The fact that such a (k, g)-cage exists for

any given k and g was proven by Sachs [113] in 1963. In the same year, Erdős and Sachs [50]

determined the following upper bound on the order of a (k, g)-cage,

n(k, g) ≤ 4

g−2∑
t−1

(k − 1)t.

The current best known upper bound on the order of cages is due to Lazebnik, Ustimenko and

Woldar [89] and can be stated as follows. Let k ≥ 2 and g ≥ 5 be integers and let q denote the

smallest odd prime power for which k ≤ q. Then,

n(k, g) ≤ 2kq3/4g−a,

where a = 4, 11/4, 7/2, 13/4 for g ≡ 0, 1, 2, 3 mod 4, respectively.

Recalling from Section 3.1.1 the Moore bound, denoted M∆,D, is the upper bound for the

number of vertices in a graph with maximum degree ∆ and diameter D and a graph that

attains the Moore bound is necessarily degree regular with odd girth 2D+1. Consequently, the

Moore bound is also a lower bound on the number of vertices in a degree regular graph of odd

girth. Therefore, any (∆, 2D + 1)-graph with order equal to M∆,D is a cage. Regarding cages

with even girth, Bond and Delorme [33] determined that the bipartite Moore bound M b
∆,D

is also the lower bound on n(k, g), for g = 2D. This relationship was later demonstrated by

Biggs [26].

In order to express this lower bound in terms of girth rather than diameter we use the term

Moore bound for cages, and the notation M(k, g), to mean the Moore bound or the Moore

bound for bipartite graphs, depending on the parity of g. Therefore,

M(k, g) =

{
1+ k

∑(g−3)/2
i=0 (k − 1)i = k(k−1)(g−1)/2−2

k−2 , for odd g;

2
∑(g−2)/2
i=0 (k − 1)i = 2(k−1)g/2−2

k−2 , for even g.
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In summary,

n∆,D ≤M∆,D = M(k, g) ≤ n(k, g), for odd girth,

and

ne∆,D ≤M b
∆,D = M(k, g) ≤ n(k, g), for even girth.

We use the term Moore cage to refer to a (k, g)-graph with order equal to the lower bound

M(k, g). Drawing from the results for the degree/diameter and the degree/diameter problem

for bipartite graphs discussed in Section 3.1.1, we make the following assertion.

There exists a Moore cage of degree k and girth g if and only if

• k = 2 and g ≥ 3, cycles Cg

• g = 3 and k ≥ 2, complete graphs Kk+1

• g = 4 and k ≥ 2, complete bipartite graphs Kk,k

• g = 5 and

– k = 2, the cycle C5

– k = 3, the Petersen graph

– k = 7, the Hoffman-Singleton graph

– and possibly k = 57

• g = 6, 8, or 12 and there exists a symmetric generalised n-gon of order k− 1, where k− 1

is a prime power

At this point we would like to discuss a number of somewhat conflicting uses of terminology

that have been used to mean what we refer to as Moore cages. The above assertion appears in

the dynamic cage survey by Exoo and Jajcay [56] with the exception that the authors refer to

the graphs as “Moore graphs” rather than Moore cages. The term Moore graph was introduced

by Hoffman and Singleton [78] in 1960, to honour Edward Moore, who introduced them to the

problem of finding graphs that attain the upper bound M∆,D. At the time Singleton was a PhD

student at Princeton University and Hoffman was one of his advisors [104]. Moore and Hoffman

came up with a concept to define sets of matrices which are analogous to the tree representation,

shown in Figure 3.1, of a graph attaining the bound M∆,D [114]. Although, Singleton [114]

considered the problem for graphs with even girth and determined the corresponding bound,

he only ever used the term Moore graph to refer to graphs with odd girth.

Around the same time and, to the best of my knowledge, independently, the bound for both odd

and even girth M(k, g) appeared in the book by Tutte [122]. Since then the bound M(3, g), has

been referred to as the “obvious lower bound” [98] and the “very naive bound” by Biggs [27].

Furthermore, since this bound is rarely attained and the number of vertices must be even for

cubic graphs Biggs defines the “naive bound” to be M(3, g)+2. Biggs [26] also says that a (k, g)-

cage with M(k, g) vertices “is said to be a Moore graph if g is odd and a generalized polygon

graph if g is even. (The reasons for the apparently bizarre terminology are historical. . . )”.
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In his survey on cages Wong [127] states that if M(k, g) = nk,g then “a minimal (k, g)-cage

is also called a minimal (k, g)-graph or a Moore graph”. Authors of more recent papers [1, 3]

have used the term “minimal (k, g)-cage” to mean a (k, g)-cage with order equal to M(k, g).

We prefer to use the term Moore cage to indicate a (k, g)-graph of order M(k, g) and hope to

avoid any confusion.

Due to the scarcity of Moore cages, research in the area of the degree/girth problem focuses

on finding (k, g)-graphs with order smaller than the current best known upper bound and

non-existence proofs to increase the lower bound. The term excess of G, denoted e, has been

introduced to measure how close a (k, g)-graph is to the Moore bound for cages, as follows. Let

G be a (k, g)-graph on n vertices and e = n−M(k, g). A summary of known cages and current

best known upper bounds on n(k, g) is given in Table 3.1.

k/g 5 6 7 8 9 10 11 12

3 10 14 24 30 58 70 112 126

4 19 26 67 80 275 384 728

5 30 42 152 170 1,296 2,688 2,730

6 40 62 294 312 7,812

7 50 90 672 32,928

8 80 114 800 39,216

9 96 146 1,152 1,170 74,752 74,898

10 126 182 1,640 132,860

11 156 240 2,618 319,440

12 203 266 2,928 354,312

13 240 336 4,342 738,192

14 288 366 4,760 804,468

Table 3.1: Summary of upper bounds for n(k, g) from [56]. Known (k, g)-cages are shown in
bold font.

There have been a number of generalisations of the standard cage question, for example, Harary

and Kovács [73] introduced the problem of finding the smallest order of a regular graph with a

given girth pair, namely, the odd and even girth of the graph. At a later date, Campbell [37]

determined the size of smallest cubic graphs with girth pairs (6,7), (6,9) and (6, 11). More

recently, Balbuena, Jiang, Lin, Marcote and Miller [17] established a general lower bound on

the order of regular graphs with given girth pair.

The standard cage problem has also been generalised to include non regular graphs. In this

case the problem can be stated as finding the minimum order of a graph with degree set

D = {δ, δ + 1, . . . ,∆} and girth g. Downs, Gould, Mitchem and Saba [45] determined a lower

bound on the order of a graph, in terms of girth, and maximum and minimum degree, as stated

in the following theorem and illustrated in Figure 3.3.
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Figure 3.3: Illustration of the lower bound on the order of a graph of even girth g > 3.

Theorem 3.1 [45] Given a graph G, with maximum degree ∆, minimum degree δ and girth

g > 3,

|V (G)| ≥
{

1 +
∑k
i=1 ∆(δ − 1)i−1 if g = 2k + 1,

1 +
∑(k−1)
i=1 ∆(δ − 1)i−1 + (δ − 1)(k−1) if g = 2k.

Tables of the current best known lower bounds for the degree/girth problem are maintained on

the Combinatorics wiki website by Exoo [54].

3.2 Graphs with Maximal Size

In this section, we examine some extremal graph theory problems concerned with determining

the maximum possible number of edges or size of a graph of given order and considering some

other constraints. Graphs that attain the maximum size under the given constraints are called

extremal graphs. We also examine the relationship between the degree/diameter problem, the

degree/girth problem and the problem of finding extremal graphs.

In 1941, Turán [46] asked: “How many edges must a graph contain that it should certainly have

subgraphs of a prescribed structure?”. Alternatively, what is the maximum size of a graph G

having order n and the property that if F ∈ F then F 6⊆ G. The answer to this question is

called the extremal number, denoted ex(n;F), and graphs with property F that have size equal

to the extremal number are said to be extremal graphs, denoted EX(n;F). Research concerned

with this question is referred to as extremal graph theory.
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A class of problems called Turán type problems has evolved around Turán’s question. Initial

research activity in this area primarily involved finding the maximum size of a graph that does

not contain a complete graph as a subgraph. Turán determined the maximum size of a Kr+1-

free graph and described the construction of such graphs. An n-vertex graph that does not

contain any (r+ 1)-vertex clique may be formed by partitioning the set of vertices into r parts

of equal or nearly equal sizes, and connecting two vertices by an edge whenever they belong to

two different parts thus creating a complete r-partite graph. The resulting graph is known as

the Turán graph Tn,r. Turán’s Theorem states that the Turán graph has the largest number of

edges among all Kr+1-free n-vertex graphs, that is,

ex(n;Kr+1) =
(
1− 1

r

)n2

2
and EX(n;Kr+1) = {Tn,r}.

An earlier result is contained in Mantel’s Theorem which states that the maximum size of

a triangle-free graph is bn2/4c. This bound is attained by the complete bipartite graphs

Kbn/2cdn/2e. Therefore,

ex(n;K3) = bn2/4c and EX(n;K3) = {Kbn/2cdn/2e}.

In other words, one must delete nearly half of the edges in Kn to obtain a triangle-free graph.

A strengthened form of Mantel’s Theorem, due to Bondy [34], states that any graph with at

least n2/4 edges must be either the complete bipartite graph Kn/2,n/2 or it must be pancyclic,

that is, the graph contains cycles of all possible lengths up to the number of vertices in the

graph.

Turán’s Theorem and Mantel’s Theorem solve the problem of determining the extremal num-

ber ex(n;Kr+1) and the extremal Kr+1-free graphs. Determining the extremal number and

enumerating the graphs that are extremal for some other subgraphs F are still open problems,

for example, when F is the complete bipartite graph Kt,u, this problem is referred to in the

literature as the Zarankiewicz problem and can be stated as follows: let Kt,u be the complete

bipartite graph on t+u vertices and tu edges, where t ≤ u. In 1954, Kövári, Sós and Turán [84]

determined the lower bound,

ex(n,Kt,u) ≤ ct,un2− 1
t .

However, the exact value of ex(n,Kt,u) is an open problem. Another open problem is finding

the extremal number for graphs that do not contain any cycles of a particular length. A general

result due to Bollobás [32] states that if m > 90sn1+1/s then the graph has a cycle of length

2s. Therefore,

ex(n; 2s) ≤ 90sn1+1/s.
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In this thesis we focus on another variation of this problem as described in the following section.

3.2.1 Extremal {C3, C4, . . . , Ct}-free Graphs

In 1975, Erdős [47] posed the problem of finding the maximum size of a graph on n vertices that

does not contain three-cycles or four-cycles. We examine a generalised version of this problem,

namely, finding the maximum number of edges in a graph of order n that contains no cycle

Ck, where k ≤ t and t ≥ 3. We use the notation ex(n; t) = ex(n; {C3, C4, . . . , Ct}) and the

term extremal number to indicate this value. Graphs having size equal to the extremal number

are called extremal {C3, C4, . . . , Ct}-free graphs or just extremal graphs when the context is

understood. For given values of n and t the set of extremal graphs is denoted EX(n; t) =

EX(n; {C3, C4, . . . , Ct}).

In contrast to the degree/diameter and degree/girth problems, when considering the problem

of determining the extremal number for particular values of n and t, we already know the order

of the graph and are concerned with finding the maximum possible size of the graph given

some girth constraints. There is however an interesting relationship between the degree/girth

problem and the problem of finding extremal graphs. This relationship was expressed by Alon,

Hoory and Linial [4] as follows:

What is the maximum number of edges in a graph with n vertices and girth g? Put

differently, what is the least number of vertices n = n(d, g) in a graph of girth g and

an average degree ≥ d?

In other words, a graph G that attains the Moore bound for cages M(k, g) is also an extremal

{C3, C4, . . . , Cg−1}-free graph G ∈ EX(M(k, g), g−1) and ex(M(k, g), g−1) = (M(k, g)×k)/2.

Furthermore, Alon, Hoory and Linial [4] demonstrated that the Moore bound for cages also

holds for graphs that are not degree regular. Alon, Hoory and Linial called this bound the

Moore bound for irregular graphs, as stated in the following theorem.

Theorem 3.2 [4] (The Moore bound for irregular graphs) Any graph with average

degree d > 2 and girth g ≥ 3 has at least v(d, g) vertices, where

v(d, g) ≥M(d, g) =

{
1 + d

∑ g−3
2

i=0 (d− 1)i for odd g;

2
∑ g−2

2
i=0 (d− 1)i for even g.

Information on known cages and what is currently known about the corresponding extremal

number is given in Table 3.2. The first column is the order of the (n, k)-cage. The second

column contains commonly known names of the corresponding cage. The third column displays

the number of cages. The question mark for the (4,7)-cage indicates that it is currently not

known if this cage is unique or not. The next three columns indicate the Moore bound for the
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(k, g)-cage, if the cage is a Moore cage or not and if the cage is known to be extremal of not. The

final column contains the extremal number ex(n; t), where n = n(k, g) and t = g−1. The value

of the extremal number, when known, is also given in the final column. When the extremal

number is not known then the lower bound on the extremal number due to the corresponding

cage is given.

In addition to the (k, g)-cages shown in Table 3.2, all current known cages having girth g = 6, 8

or 12, with the exception of the (7, 6)-cage, are Moore cages and therefore extremal graphs.

The only currently known cages that are known not to be extremal graphs are the (5,5)-cages.

All other cages have either been shown to be extremal graphs or provide the current best known

lower bound on the corresponding extremal number. Note that the Robertson graph and the

McGee graph are unique cages, not Moore cages and yet they are extremal graphs.

n(k, g) Name # M(k, g) Moore Extremal ex(n; t)

n(3, 5) = 10 Petersen 1 10 Yes Yes ex(10; 4) = 15
n(4, 5) = 19 Robertson 1 17 No Yes ex(19; 4) = 38
n(5, 5) = 30 4 26 No No ex(30; 4) = 76
n(6, 5) = 40 1 37 No ? ex(40; 4) ≥ 120
n(7, 5) = 50 Hoffman-Singleton 1 50 Yes Yes ex(50; 4) = 175
n(3, 6) = 14 Heawood 1 14 Yes Yes ex(14; 5) = 21
n(4, 6) = 26 1 26 Yes Yes ex(26; 5) = 52
n(5, 6) = 42 1 42 Yes Yes ex(42; 5) = 105
n(6, 6) = 62 1 62 Yes Yes ex(62; 5) = 186
n(7, 6) = 90 1 86 No ? ex(90; 5) ≥ 315
n(3, 7) = 24 McGee 1 22 No Yes ex(24; 6) = 36
n(4, 7) = 67 ? 53 No ? ex(67; 6) ≥ 134
n(3, 8) = 30 Tutte-Coxeter 1 30 Yes Yes ex(30; 7) = 45
n(3, 9) = 58 18 46 No ? ex(58; 8) ≥ 87
n(3, 10) = 70 3 62 No ? ex(70; 9) ≥ 105
n(3, 11) = 112 Balaban 1 94 No ? ex(112; 10) ≥ 168
n(3, 12) = 126 Benson 1 126 Yes Yes ex(126; 11) = 189

Table 3.2: Data used to illustrate the relationship between cages and extremal graphs.

Following the example of Loz, Pérez-Rosés and Pineda-Villavicencio [97] and Exoo [54], we

have created a section on the Combinatorics wiki dedicated to the problem of finding extremal

{C3, C4, . . . , Ct}-free graphs [102]. We hope this web site will promote the problem of finding

the value of ex(n; t) and the corresponding extremal {C3, C4, . . . , Ct}-free graphs. We also

intend to provide an up-to-date reference for people interested in this problem thus, avoiding

any duplication of efforts.

3.3 Connectivity

Menger’s Theorem regarding connectivity, appeared in the first book written on graph theory,

“Theorie der endlichen und unendlichen Graphen” [83], which was printed in 1936. In order to

introduce Menger’s theorem we require the following terminology. A u − v separating set is a

set of vertices X ⊂ V (G) − {u, v} whose removal separates u and v into different components
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of V (G)−X. A collection of u− v paths is said to be internally disjoint if they only have the

end vertices u and v in common.

Theorem 3.3 (Menger’s Theorem 1927) [105] Let u and v be non-adjacent vertices of a

graph G. The minimum number of vertices in a u− v separating set is equal to the maximum

number of internally disjoint u− v paths in G.

Around the same time, Whitney [124] observed the relationship between the vertex connectivity,

edge connectivity and minimum degree, namely, κ ≤ λ ≤ δ and developed the following theorem.

Theorem 3.4 (Whitney’s Theorem 1932) [124] A nontrivial graph, G, is k connected for

some integer k ≥ 2 if and only if for each pair u,v of distinct vertices of G, there are at least k

internally disjoint u− v paths in G.

In 1958, Berge [25] asked the question “What is the maximum connectivity of a graph with n

vertices and m edges?”. This question was answered by Harary [70] in 1962. Harary showed

that, for every pair of integers n, m with 2 ≤ n− 1 ≤ m ≤
(
n
2

)
, there exists a graph G of order

n and size m having vertex connectivity κ = b2m/nc. Furthermore, it has been shown that a

connected graph G having diameter 2, has λ = δ [111].

In addition to the vertex and edge connectivity of a graph, there are a number of other measures

of “connectedness” that can be used in the design of fault tolerant networks. One such property

is the number of minimum cut sets in the graph. The likelihood of a graph becoming discon-

nected due to a random failure of components or links increases when the number of minimum

cut sets increases. Other such properties consider the number and size of the components in

the resulting disconnected graph. In general, it is preferable to have fewer components with all

but one component being isolated vertices.

In 1983, in a paper dedicated to Karl Menger, Harary [72] introduced the terms P-connectivity

and P-line-connectivity, denoted respectively by, κ(G:P ) and λ(G:P ) to mean the minimum

cardinality of a set of vertices S, respectively, edges F , such that, G−X, respectively, G− F ,

is disconnected and every component of G − X, respectively, G − F , has the property P .

The property P may be related to the degree, order, size, diameter or some other property

of the resulting components. Harary also used the terms conditional vertex connectivity and

conditional vertex connectivity to mean the same.

The concept of conditional connectivity introduced by Harary considers the properties of the

components of G−X or G−F . Esfanhanian and Hakimi [52] introduced the notion of restricted

connectivity, where the restrictions are on the cut set rather than on the resulting connected

components. The motivation for this concept was to be able to consider heterogeneous networks

in which the likelihood of failure is vastly different depending upon the nodes or edges being

considered, for example, when considering the edges or links in a computer network, it is less
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likely that a fiberoptic cable will fail compared to a satellite link. Analogously, when considering

the nodes of the network to be computers and web servers, large corporations will have back-up

web servers for redundancy in case a server may fail, so from the network point of view the node

is not disconnected. Formally, the R-edge connectivity of a graph G, denoted λ(G|F :R) is the

minimum cardinality of a set of edges F , such that G − F is disconnected and F is restricted

to a given subset of edges R, that is, F ⊆ R ⊆ E(G). The R-vertex connectivity of a graph

G, denoted κ(G|X:R), is defined similarly with X ⊆ R ⊆ V (G). Esfanhanian and Hakimi [52]

describe an algorithm for computing the P -edge-connectivity of a graph but conjecture that

computing the restricted connectivity of a graph, with the restriction being that the cut set is

nontrivial, is NP-hard. Furthermore, κ(G|X:R), when the restriction is that X does not contain

all the vertices that are adjacent to one vertex, does not exist for some graphs, for example, see

Figure 3.4. For these reasons, it is desirable to be able to determine the connectivity of a graph

using our knowledge of other parameters that are more easily calculated, for example diameter,

girth and maximum and minimum degree.

Hellwig and Volkmann [76] use the notation λ′(G) = λ′ to mean the minimum cardinality of

an edge cut set over all edge cuts F , such that G − F does not contain any isolated vertices.

They call a graph λ′-optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge degree in G.

Hellwig, Rautenbach and Volkmann [75] introduced λp(G) defined as the minimum cardinality

of an edge cut set over all edge cut sets F , such that each component of G−F contains at least

p vertices. In the same paper, a more general parameter λpq(G), is defined as the minimum

cardinality of an edge cut set over all edge cut sets F , such that one component of G − F

contains at least p vertices and another component of G−F contains at least q vertices, where

p and q are positive integers.

The notion of superconnectedness was proposed in [23, 30, 31]. A graph is superconnected, for

short super-κ, if all minimum vertex cut sets are trivial, see Boesch [30], Boesch and Tindell [31]

and Fiol, Fàbrega and Escudero [62]. Observe that a superconnected graph is necessarily

maximally connected, κ = δ, but the converse is not true, for example, a cycle Cn, where

n ≥ 6, is maximally connected but not superconnected. A cut set X of G is called a nontrivial

cut set if X does not contain the neighbourhood N(u) of any vertex u 6∈ X. Provided that

some nontrivial cut set exists, the superconnectivity of G denoted by κ1 was defined in [10, 62]

as follows,

κ1 = κ1(G) = min{|X| : X is a nontrivial cut set}.

A nontrivial cut set X is called a κ1-cut if |X| = κ1. Notice that if κ1 ≤ δ, then κ1 = κ

and κ1 > δ is a sufficient and necessary condition for G to be super-κ, since all the minimum

disconnecting sets with cardinality equal to δ must be trivial. A nontrivial edge cut, the edge-

superconnectivity λ1 = λ1(G) and a λ1-cut are defined analogously. The index λ1(G) is also

known under the name restricted edge connectivity which was introduced by Esfahanian and
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Figure 3.4: A superconnected graph.

Hakimi [52], who denoted it by λ′(G). The existence of restricted edge cuts has been studied

in [36,110,128,130].

Sufficient conditions for maximally connected dense graphs in terms of the diameter and girth

of a graph were given by Soneoka, Nakada, Imase and Peyrat [117]. These conditions are

summarised in the following theorem.

Theorem 3.5 [117] Let δ, κ, λ, D, g be respectively the minimum degree, vertex-connectivity,

edge-connectivity, diameter and girth of a graph G.

λ = δ if

{
D ≤ g − 1, g odd,

D ≤ g − 2, g even.

κ = δ if

{
D ≤ g − 2, g odd,

D ≤ g − 3, g even.

Balbuena, Carmona, Fàbrega and Fiol improved upon Theorem 3.5 as shown in Theorem 3.6.

Theorem 3.6 [11] Let G be a graph with minimum degree δ ≥ 2, girth g, edge minimum

degree ξ, connectivities λ and κ. Then

λ ≥ min{δ, 4} if D ≤ g − 1, g even

κ ≥ min{δ, 4} if D ≤ g − 2, g odd

The sufficient conditions given in Theorem 3.6 have been improved by Balbuena and Marcote

[18] for regular graphs as shown in the following theorem.

Theorem 3.7 [18] Let G be an r-regular graph with r ≥ 2 girth g and connectivities λ and κ.

Then

(i) λ ≥ 2 if D ≤ 2b(g − 1)/2c+ 2.

(ii) κ ≥ 2 if any of the following statements hold:
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D ≤ 2b(g − 1)/2c+ 2 when r ≤ 3.

D ≤ 2b(g − 1)/2c+ 1.

(iii) κ ≥ min{r, 3} if D ≤ g − 1.

(iv) κ ≥ min{r, 6} if D ≤ g − 2 for even g.

Analogously, Fàbrega and Fiol [58] determined sufficient conditions, in terms of girth and

diameter, for a graph to be super-κ or super-λ connected. These conditions are presented in

the following theorem.

Theorem 3.8 [58] Let D and g be respectively the diameter and girth of a graph G.

G is super-λ if

{
D ≤ g − 2, g odd,

D ≤ g − 3, g even.

G is super-κ if

{
D ≤ g − 3, g odd,

D ≤ g − 4, g even.

Subsequently, Balbuena, Garćıa-Vázquez and Marcote [16] and Balbuena, Cera, Diánez, Garćıa-

Vázquez, and Marcote [13] refined these results as demonstrated by the following theorems.

Theorem 3.9 [16] Let G be a graph with minimum degree δ ≥ 2, diameter D, girth g, edge

minimum degree ξ, and edge superconnectivity λ1. Then,

λ1 = ξ if D ≤ g − 2.

Theorem 3.10 [13] Let G be a graph with minimum degree δ ≥ 2, diameter D, girth g, edge

minimum degree ξ, and superconnectivity κ1. Then,

κ1 ≥ ξ if D ≤ g − 3.

In [77] Hellwig and Volkmann provided a comprehensive survey of sufficient conditions for a

graph to achieve lower bounds on κ, λ, κ1 and λ1.

3.3.1 Connectivity of Moore Graphs

The complete graphs, K∆+1, are, by definition, maximally connected and superconnected. The

cycles C2D+1, are maximally connected but not super-λ or super-κ connected. The Petersen

graph, the Hoffman-Singleton graph and the Moore graph with ∆ = 57 and diameter 2, if it

exists, all have diameter 2 and odd girth 5. Application of Theorem 3.5 determines that these
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graphs are maximally connected. Similarly, applying Theorem 3.8 asserts that the graphs are

super-κ.

In summary, all Moore graphs are maximally connected. Furthermore, all Moore graphs, with

the exception of the cycles C2D+1, are superconnected.

3.3.2 Connectivity of Cages

In 1997, Fu, Huang and Rodger [64] proved that all (k, g)-cages are 2-connected and that all

(3, g)-cages are 3-connected. They further conjectured that every (k, g)-cage is k-connected. In

support of this conjecture, Jiang and Mubayi [81] and, independently, Daven and Rodger [43],

proved that every (k, g)-cage with k ≥ 3 is 3-connected. Xu, Wang and Wang [129] showed

that all (4, g)-cages are 4-connected. The fact that every (k, g)-cage with k ≥ 4 and g ≥ 10

is 4-connected was proven by Marcote, Balbuena, Pelayo and Fàbrega [100]. It has also been

shown by Marcote, Balbuena and Pelayo [101] that every (k, g)-cage is maximally connected for

girth g = 5, 6 and 8. Publications by Lin, Miller and Balbuena [94] and Lin, Balbuena, Marcote

and Miller [91] contain lower bounds on the vertex connectivity that support the conjecture

that every (k, g)-cage is k-connected, however, the conjecture remains open. More recently, Lin,

Lu, Wu and Yu [92] showed that (4, g)-cages with even girth, g ≥ 12, are superconnected.

On the other hand, the problem of determining the edge connectivity of cages has been settled.

All (k, g)-cages have been proven to be k-edge connected if g is odd, by Wang, Xu and Wang [126]

and for even girth by Lin, Miller and Rodger [93]. Moreover, the fact that all (k, g)-cages are

edge superconnected was proven by Marcote and Balbuena [99], for odd girth and Lin, Miller,

Balbuena and Marcote [95] for even girth.

3.3.3 Connectivity of Extremal Graphs

It is well known that for n ≤ t the extremal graphs are the trees on n vertices. Knowledge

of the structure of the extremal graphs for n ≤ t allows us to determine that these graphs

are maximally connected with connectivity κ = 1. Furthermore, since D ≤ t − 1 ≤ g − 2,

for all extremal graphs, applying Theorem 3.8 tells us that the extremal graphs are maximally

connected, that is, κ = λ = δ for even t.

Tang, Lin, Balbuena and Miller [118] further investigated the connectivity of extremal graphs

and assert that, for every extremal graph G, the restricted edge connectivity is equal to the

minimum edge degree, that is, λ′(G) = ξ(G) as stated in the following theorem.

Theorem 3.11 [118] Let G be an extremal graph G ∈ EX(n, t), for n ≥ 6, minimum degree

δ ≥ 2 and minimum edge degree ξ = ξ(G) = min{deg(u) + deg(v) − 2 : uv ∈ E(G)}. Then G

has a restricted edge connectivity λ′ = ξ.
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In summary, all extremal graphs having minimum degree δ ≥ 2 and odd girth are super edge

connected and maximally connected when t is even. Tang, Lin, Balbuena and Miller [118] con-

jectured that extremal graphs are also maximally connected for odd t. In order to determine if

extremal graphs are maximally connected for n > t we require further knowledge of their struc-

tural properties. In particular, knowledge of the girth, diameter, and maximum and minimum

degree of a graph is helpful in determining the connectivity. In Section 4.2, we summarise what

is currently known about the structure of extremal graphs.
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4
Extremal Graphs

In this chapter, we give a brief history of research in the area of extremal {C3, C4, . . . , Ct}-free

graphs. Furthermore, we summarise what is currently known about extremal values of ex(n; t)

including our new results which are indicated by the symbol ♦. In Section 4.1, we make

some general observations and introduce the notation that we use throughout this chapter. In

Section 4.2, we list some known structural properties of extremal graphs. Using the knowledge

of the observations given in Section 4.1 and the structural properties described in Section 4.2

we have developed an algorithm that we use to generate a number of graphs with size greater

then the current best known lower bounds on ex(n; t), for n ≤ 200 and 4 ≤ t ≤ 11. We call

this algorithm the Grow and Prune or GAP algorithm. In Section 4.3, we describe our GAP

algorithm. The new lower bounds on ex(n; t) due to graphs produced by our algorithm are

given in subsequent sections.

In Section 4.4, we give a summary of the current best known lower bounds and exact values

of ex(n; t), for n ≤ 200 and t = 3 and 4, drawing from the pioneering papers by Garnick and

Neuwejaar [68] and Garnick, Kwong and Lazebnik [66,67] and recent work by Abajo, Balbuena

and Diánez [1]. Furthermore, we use our GAP algorithm to improve the lower bounds on

ex(n; 4) given in [1, 66,68], for 120 different values of n ≤ 200.

In Section 4.5, we give a number of constructions that produce new infinite families of graphs

which we prove to be extremal. In Section 4.6, we give a summary of the current best known

lower bounds and exact values of ex(n; t), for t = 5, 6 and 7, including our new results. Moreover,

we provide full proofs, for ex(30; 6) = 47, ex(31; 6) = 49 and ex(32; 6) = 51. In Section 4.7, we

summarise what is known about ex(n; t), for t = 8, 9, 10 and 11, and use our GAP algorithm

to generate new lower bounds on ex(n; t), for n ≤ 200 and t = 8, 9, 10 and 11. Furthermore, we

establish the exact values of the extremal numbers: ex(n; 8), for n = 23, 24, 25, 26; ex(n; 9), for

n = 26, 27, 28, 29; and ex(127; 11).

33
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4.1 Observations and Notation

In 1975, Erdős [47] posed the problem of finding the maximum size of graphs that do not

contain three-cycles or four-cycles. In this chapter, we examine a generalised version of this

problem, namely, finding the maximum number of edges in a graph of order n that contains

no cycle Ck, where k ≤ t and t ≥ 3. We use the notation ex(n; t) = ex(n; {C3, C4, . . . , Ct})
and the term extremal number to indicate this value. Graphs having size equal to the ex-

tremal number are called extremal {C3, C4, . . . , Ct}-free graphs or just extremal graphs when

the context is understood. Given n and t, the set of extremal graphs is denoted EX(n; t) =

EX(n; {C3, C4, . . . , Ct}). Furthermore, we use the notation exl(n; t) and exu(n; t) to denote

current best known lower and upper bounds on ex(n; t) when the extremal number is not yet

known. The sets of graphs that demonstrate the bounds exl(n; t) and exu(n; t) are denoted by

EXl(n; t) and EXu(n; t), respectively.

Since, by definition, extremal graphs do not contain any cycles of length less than or equal to

t, the extremal graphs, for n ≤ t, must be acyclic. Therefore, for n ≤ t, the extremal graphs

are the trees on n vertices, Tn, including the stars K1,n−1 and paths Pn, and ex(n; t) = n− 1.

Since EX(n; t) = {Tn}, for n ≤ t, the problem of enumerating the extremal graphs in the set

EX(n; t) is equivalent to enumerating the trees Tn (see [71] pages 178-192). For n = t+ 1, the

cycles on n vertices, Cn, are the unique extremal graphs, that is, EX(t + 1; t) = {Ct+1}, and

ex(t + 1; t) = t + 1. For t + 1 < n ≤ 3t/2, the extremal number is ex(n; t) = n and the set of

extremal graphs EX(n; t) consists of the unicyclic graphs on n vertices.

Extremal graphs that do not contain cycles of length less than or equal to t+ 1, by definition,

are free of cycles of length t or less, therefore, the function ex(n; t) is non-increasing in t for

fixed n. More formally,

ex(n; t+ 1) ≤ ex(n; t). (4.1)

Given G ∈ EX(n; t) and a vertex x /∈ V (G), a new graph G′ with vertex set V (G′) = V (G)∪{x}
and edge set E(G′) = E(G) ∪ {xy}, where y ∈ V (G), can be obtained. Therefore,

ex(n+ 1; t) ≥ ex(n; t) + 1. (4.2)

Let the minimum and maximum degrees be denoted by δ and ∆ respectively. If d denotes the

average degree, then

δ ≤ bdc ≤ d ≤ dde ≤ ∆. (4.3)

Given a graph G ∈ EX(n; t), removing a vertex v of degree deg(v) = δ results in a graph of

order n− 1, girth g ≥ t and size |E(G− v)| ≤ ex(n− 1; t). Therefore,
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ex(n; t)− δ ≤ ex(n− 1; t). (4.4)

Combining the Inequalities 4.4 and 4.3 gives the following inequality.

ex(n; t)− ex(n− 1; t) ≤ δ ≤ b2ex(n; t)/nc ≤ d2ex(n; t)/ne ≤ ∆ (4.5)

Inequality 4.4 is the result obtained by the removal of a vertex of minimum degree from an

extremal graph G ∈ EX(n; t). As a natural extension, consider the removal of any vertex

or set of vertices from ex(n; t). Given a graph G ∈ EX(n; t), removing a vertex v results

in a graph G − v of order n − 1, girth g ≥ t + 1 and size |E(G)| − deg(v). Consequently,

ex(n; t)− deg(v) ≤ ex(n− 1; t). Furthermore, deleting a path v1, v2, . . . , vk, where k ≤ t, from

G will delete k vertices and deg(v1) + deg(v2) + . . .+ deg(vk)− k + 1 edges. Therefore,

Observation 4.1 For G ∈ EX(n; t) and Pk ⊂ G

|E(G− Pk)| = ex(n; t)− deg(x1)− deg(x2)− . . .− deg(xk) + k − 1 ≤ ex(n− k; t)

We adopt the notation T∆,δ,t to denote the tree having height b(t+ 1)/2c and root r such that

deg(r) = ∆, the leaves have degree 1, and every other vertex v 6= r has deg(v) = δ. Since

g ≥ t + 1, every G ∈ EX(n; t) must contain T∆,δ,t as a subgraph. Furthermore, the order of

T∆,δ,t is equal to the lower bound on the order of a graph, in terms of girth, maximum and

minimum degree, as stated in Theorem 3.1. In the following theorem we restate Theorem 3.1

in terms of t.

Theorem 4.1 [45] Let G be a graph with maximum degree ∆, minimum degree δ and girth

g > t > 3. Then G contains the tree T∆,δ,t as a subgraph. Thus,

|V (G)| ≥ |V (T∆,δ,t)| =
{

1 +
∑t/2
i=1 ∆(δ − 1)i−1 for even t,

1 +
∑(t−1)/2
i=1 ∆(δ − 1)i−1 + (δ − 1)(t−1)/2 for odd t.

Moreover, |E(T∆,δ,t)| = |V (T∆,δ,t)|−1. We useX to denote the set of verticesX = V (G−T∆,δ,t).

We use the notation T∆,δ,t(F) to represent the tree T∆,δ,t with additional forbidden subgraph

constraints, that is, if F ⊂ F then F * T∆,δ,t. We use the terms short cycle and forbidden

cycle to refer to a cycle Ck, where k ≤ t, these cycles are, by definition, forbidden subgraphs

and will not be explicitly listed in the set F .

Abajo and Diánez [3] observed that in order to prove ex(n; t) ≤ m it is sufficient to prove the

non-existence of a graph of order m+ 1 and girth g > t. In order to prove the non-existence of

a graph G ∈ EX(n; t) of order m+ 1 we determine a number of necessary structural properties
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of G. In particular, we use Observation 4.1 to determine that particular paths are forbidden in

G. We use the notation P jk to mean the path on k vertices such that all k vertices in the path

have degree j in G.

4.2 Structural Properties of Extremal Graphs

Knowledge of the structural properties of extremal graphs can be utilised to determine the

values of currently unknown extremal numbers and the existence of corresponding extremal

graphs. In particular, we exploit knowledge of the diameter and girth of extremal graphs in

our GAP, in order to discover new and improved lower bounds on ex(n; t), for n ≤ 200 and

3 < t < 11. Furthermore, increased understanding of the structure of extremal graphs may

provide some insight to Tang, Lin, Balbuena and Miller’s [118] conjecture that all extremal

graphs are maximally connected. In Sections 4.2.1 and 4.2.2, we provide a summary of what is

currently known about the diameter and girth of extremal graphs.

4.2.1 The Diameter of Extremal Graphs

Garnick, Kwong and Lazebnik [66] investigated the diameter of the extremal graphs G ∈
EX(n; 4) and determined that the diameter is at most 3. The same authors observed that

if d(x) = δ(G) = 1 then the graph G − {x} has diameter 2. Recent work by Balbuena, Cera,

Diánez and Garćıa-Vázquez [14] generalised these results for other values of t by proving that

for G ∈ EX(n; t) the diameter D ≤ t − 1 and if d(x) = δ(G) = 1 then the graph G − {x} has

diameter D ≤ t − 2. Since t < g, any extremal graph G ∈ EX(n; t) has D < t < g therefore

D ≤ g−2. Analogously, results for cages were determined by Erdős and Sachs [50], who proved

that if D is the diameter of a (k, g)-cage, then D ≤ g. All current known cages and graphs that

demonstrate the current best known upper bound on the order of a (k, g)-cage have D < g.

Furthermore, if a (k, g)-graph is a Moore cage then D = b(g − 1)/2c [26].

4.2.2 The Girth of Extremal Graphs

Garnick and Nieuwejaar [68] asked the question “Is there a constant c, such that, for all n ≥ ck,

the girth of an extremal graph G ∈ EX(n; t) is g = t+ 1?”. This question has been the subject

of much of the research in the area of extremal graphs. Lazebnik and Wang [90] determined

a lower bound on n in terms of t that ensures that the girth of a graph G ∈ EX(n, t ≥ 12)

is g = t + 1, namely, n ≥ 2a
2+a+1ta , where a = t − 3 − b(t− 2)/4c. Balbuena and Garćıa-

Vázquez [15] recently improved this lower bound to n > (2(t − 2)t−2 + t − 5)/(t − 3), for

G ∈ EX(n, t ≥ 6).

Lazebnik and Wang [90] showed that ex(2t + 2; t) = 2t + 4, for t ≥ 12, and there exists

G ∈ EX(2t + 2; t) with g = t + 2. Balbuena, Cera, Diánez and Garćıa-Vázquez [14] showed

that, for n ≤ t + 1 + b(t− 2)/2c, there are extremal graphs with g = t + 2. We have found
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there are no extremal graphs G ∈ EX(n; t) with girth g = t + 1 and minimum degree δ ≥ 2,

for t+ 2 ≤ n ≤ t+ 1 + b(t− 2)/2c, contradicting item (iii) of the following theorem.

Theorem 4.2 [90] Let G ∈ EX(n; t) then, for n ≥ t+ 1 and t ≥ 3

(i) there exists an extremal graph with δ ≥ 2;

(ii) there exists an extremal graph of girth t+ 1;

(iii) if n 6= t+2 there exists an extremal graph with minimum degree δ ≥ 2 and girth g = t+1.

The extremal graphs G ∈ EX(n; t), for t + 2 ≤ n ≤ t + 1 + b(t− 2)/2c, are unicyclic, for

example, G ∈ EX(11; 8) has n = 11 ≥ t + 1 = 9, t = 8 ≥ 3 and n 6= t + 2. The graphs in the

set EX(11; 8) include: the cycle C11; the cycle C10 with a pendant vertex; and the cycle C9

with either two pendant vertices or a path of length 2 attached (see Figure 4.1). There is no

graph G ∈ EX(11; 8) with girth g = 9 and minimum degree δ ≥ 2. However, if we change the

assumption to n > t+ 1 + b(t− 2)/2c then the proof of Lazebnik and Wang [90] holds and the

corrected version of the Theorem 4.2 (iii) can be stated as follows.

Figure 4.1: Three different graphs in EX(11; 8).

♦ Theorem 4.3 Let G ∈ EX(n; t), for t ≥ 3. Then there exists an extremal graph with

minimum degree δ ≥ 2 and girth g = t+ 1, for n > t+ 1 + b(t− 2)/2c.

A summary of known conditions under which the girth of any extremal graph G ∈ EX(n; t) is

known to be t+ 1 and upper bounds on the girth are given in the following two lists.

Conditions under which the girth of any extremal graph G ∈ EX(n; t) is known to be t+ 1.

• G ∈ EX(n ≥ 7; 4) [68]

• G ∈ EX(n ≥ 8; 5) [90]

• G ∈ EX(n ≥ 12; 6), for n /∈ {15, 80, 170} [14]

• G ∈ EX(n ≥ 16; 6) [1]

• G ∈ EX(n ≥ 783; 7) [15]

• G ∈ EX(n ≥ t+ 5; t), when D = t− 1 and δ ≥ 3 [14]

• G ∈ EX(n; t), when ∆ = t+ 1 [90]
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For upper bounds on the girth of an extremal graph, we have

• g ≤ t+ 2, for n > (2(a− 2)t−2 + a− 5)/(a− 3), where a = d(t+ 1)/2e ≥ 4 [15]

• g ≤ 2t− 4, for n ≥ 2t− 2 and t ≥ 5 [15]

• g ≤ 2t− 5, for n ≥ 2t− 3 and t ≥ 7 [14]

4.3 Grow and Prune Algorithm

In this section we describe the motivation and philosophy behind the development of our GAP

algorithm. Furthermore, we provide a description of how the algorithm is used to “Grow” and

“Prune” a graph. Pseudocode for our GAP algorithm is contained in Appendix A.

Motivated by the fact that a number of cages are extremal graphs (see Table 3.2) we decided to

examine the (k, g)-graphs that give the current best known upper bound on the order of a (k, g)-

cage for the degree/girth problem (see Table 3.1). The graphs that attain these bounds and

descriptions of the construction techniques used to create these graphs are given in the dynamic

cage survey by Exoo and Jajcay [56]. We found that the (k, g)-graphs that give the best known

upper bounds on the order n(k, g) for the degree/girth problem often give the current best

known lower bound on ex(n(k, g), g − 1). One notable exception being the (5, 5)-cages which

have order 30 and one edge less than the corresponding extremal number ex(30; 4) = 76.

In order to take advantage of these graphs we developed our GAP algorithm which is essentially

a greedy algorithm. The algorithm takes as input: a graph which is extremal, or provides a

good lower bound on the extremal number; an integer t; and an array of integers that are the

current best known lower bounds on ex(n; t), for n ≤ 200. The input or seed graph is “Pruned”

by deleting the vertex with lowest degree and “Grown” by grafting edges and paths onto the

original graph in such a manner that the girth is maintained. Whenever the current best known

lower bound is improved the array is updated.

All current known cages and graphs that demonstrate the current best known upper bound

on the order of a (k, g)-cage have D < g. For this reason the GAP algorithm was designed

with the assumption that the input graph is degree regular, with girth g = t+ 1 and diameter

D < t + 1 ≤ g. We have, however, run the GAP algorithm using non regular graphs as input

with pleasing results, for example, when using the subdivided Petersen graph as a seed graph,

the GAP algorithm produced two new extremal graphs (see Theorems 4.23 and 4.24).

4.3.1 Grow

Given a graph Gl ∈ EXl(n; t) we can obtain a lower bound on ex(n + 1; t) by application of

Observation 4.2, that is, exl(n+ 1; t) ≥ exl(n; t) + 1. Therefore, we can always “Grow” a graph

Gl by adding a pendant vertex thus increasing the order and size by one while maintaining the

girth. In some cases we can do better than this, for example, if the diameter of Gl is equal
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to t then we can add an edge between two vertices in Gl that are at distance t apart without

increasing the number of vertices in the graph or violating girth constraints. In order to take

advantage of this we add pendant vertices in such a fashion that the diameter of the resulting

graph is maximised.

More formally, the GAP algorithm “Grows” a graph G by selecting two arbitrary vertices u and

v whose distance from each other is equal to the diameter of G, that is, d(u, v) = D. If D = t,

then we add the edge {u, v}, otherwise we add the path {{u, n+1}, {n+1, n+2}, . . . , {n+k, v}},
where n+ 1, n+ 2, . . . , n+ k are all new vertices in G. At the end of each iteration of the Grow

algorithm we have either a graph G′ with |V (G′)| = |V (G)| and |E(G′)| = |E(G)| + 1 or a

graph G′′ with |V (G′′)| = |V (G)|+ k and |E(G′)| = |E(G)|+ k + 1.

An alternative implementation of the “Grow” algorithm is to subdivide an edge of Gl. We ex-

perimented with the subdivision method but the results that we obtained were either equivalent

or inferior to those obtained by our GAP algorithm.

4.3.2 Prune

Our GAP algorithm “Prunes” a graph G in two steps. The first step consists of finding g

vertices that lie on a girth cycle of G and deleting them one by one. The second step consists

of finding a vertex v ∈ G, such that, deg(v) = δ and deleting it. This step is then iterated until

|V (G)| = t+ 1. In some cases we ran the second step of the algorithm manually and improved

the results by carefully selecting the next vertices to be deleted, for example, after deleting all

of the vertices that were on a girth cycle Cg ⊂ G we would then delete all vertices in another

cycle Ck ∈ G such that |V (Ck) ∩ V (Cg)| is maximal.

The GAP algorithm is very simple and fast in comparison to hill-climbing and back-tracking

techniques used by Garnick, Kwong and Lazebnik [66] and the hybrid simulated annealing

and genetic algorithm used by Tang, Lin, Balbuena and Miller [118]. The greedy algorithm

developed by Abajo and Diánez [3] is similar to our algorithm except that they use a combination

of subdividing arbitrary edges and adding paths.

Considering the simplicity of our algorithm we were pleased that the lower bounds produced by

the GAP algorithm, in most cases, improved upon or, at least, matched those given in [3,66,118].

Admittedly the performance of our GAP algorithm is heavily dependent upon good seed graphs.

4.3.3 Seed Graphs

The seed graphs that we used for the GAP algorithm include: the cycles Cn; the (k, g)-cages;

the (k, g)-graphs that give the current best known upper bound on n(k, g); and the graphs

presented in Section 4.5.
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With the exception of the (7,6)-cage and the cages that are point-line incidence graphs of gen-

eralised polygons, the adjacency lists for the known cages were available to us in the Maple

software package. We acquired the adjacency list for the (7,6)-cage from Exoo [53]. We con-

structed: the (k,6)-cages, for k = 5, 6, 8, 9, 10 using the projective planes, for order k − 1; the

(k,8)-cages, for k = 3, 4, 5 using the generalised quadrangles of order (2,2), (3,3) and (4,4), re-

spectively, and; the Benson graph or (3,12)-cage which is the incidence graph of the generalised

hexagon of order (2,2). We used the list of projective planes and generalised polygons on the

website maintained by Moorhouse [107] to do this.

We acquired adjacency lists for graphs that give the current best known upper bounds for the

order of (k, g)-cages from Exoo [53,55].

In some cases, we found graphs that provide the current best known lower bounds, but we

did not acquire the adjacency list or construct the graphs, for example, we considered all the

constructions listed in dynamic cage survey by Exoo and Jajcay [56] and the trivalent symmetric

graphs listed by Condor and Dobcsányi [40]. In such cases we took advantage of knowledge

of the structure of these graphs, for example, degree regularity and diameter to calculate new

lower bounds manually.

4.4 ex(n; t), for t ∈ {3, 4}

The problem of finding ex(n; 3) and corresponding extremal graphs was solved, in 1907, by

Mantel’s Theorem which states that the maximum size of a triangle-free graph is bn2/4c. This

bound is attained by the complete bipartite graphs Kbn/2cdn/2e. Therefore,

ex(n;K3) = bn2/4c and EX(n;K3) = {Kbn/2cdn/2e}.

In 1975, Erdős [47] posed the problem of finding the maximum size of graphs that do not contain

three-cycles or four-cycles and conjectured that ex(n; 4) = (1/2 + O(1))3/2n3/2. The current

best known lower bound on ex(n; 4) to date is due to Garnick and Neuwejaar [68], namely,

1

2
√

2
n3/2 ≤ ex(n; 4)

The best known upper bound to date is due to Garnick, Kwong and Lazebnik [66], namely,

ex(n; 4) ≤ 1

2
n
√
n− 1
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This inequality is an equality if and only if G is a Moore graph of diameter 2 or an isolated

vertex. We use this result to generate the upper bounds on ex(n; 4) that are listed in Table B.1

in Appendix B.

Garnick, Kwong and Lazebnik [66] showed that the diameter of G ∈ EX(n; 4) is at most 3 and

if d(x) = δ(G) = 1 then the graph G − {x} has diameter at most 2. Using this result they

were able to draw from the work of Bondy, Erdős and Fajtlowicz [35] to show that the extremal

graphs G ∈ EX(n; 4) include:

• The stars K1,n−1, for n ≤ 4

• The Moore graphs

– C5

– The Petersen graph

– The Hoffman-Singleton graph

– The Moore graph with girth 5 and degree 57 if it exists

• The polarity graphs (see Section 2.2)

Proposition 4.1 [66] For all G ∈ EX(n; 4) of order n ≥ 1,

(i) n ≥ 1 + ∆δ ≥ 1 + δ2.

(ii) δ ≥ ex(n; t)− ex(n− 1; t) and ∆ ≥ d2ex(n; 4)/ne.
(iii) n ≥ 1 + d2ex(n; 4)/ne(ex(n; 4)− ex(n− 1; 4)).

The maximum size of graphs that do not contain three-cycles or four-cycles, ex(n; 4), for n ≤ 24,

and constructive lower bounds, for n ≤ 200, are given by Garnick, Kwong and Lazebnik in [66].

The constructive lower bounds were produced by algorithms that use hill-climbing and back-

tracking techniques. Additional values of ex(n; 4), for 25 ≤ n ≤ 30 were determined by Garnick

and Nieuwejaar in [68]. These results are summarised in Table 4.1. The values that are

displayed in bold font are exact values of the extremal number, all other values are lower

bounds on ex(n; 4).

The results in Table 4.1 were not improved upon for over ten years. In 2010, Abajo, Balbuena

and Diánez [1] constructed some infinite families of graphs that improve the lower bounds on

ex(n; 4). The new lower bounds produced by these constructions are given in Theorem 4.4,

where these constructions are improvements on the previously known lower bounds on ex(n; 4)

they are displayed in Table 4.2.

Theorem 4.4 [1] Let f4(n) = ex(n; 4) and let q ≥ 3 be a prime power. Then

(i) f4(2q2 + q) ≥ q2(q + 1) + (q + 1)f4(q).

(ii) f4(2q2 + q − h) ≥ q2(q + 1) + (q + 1)f4(q) − hq + ε, for q = 8, 9, 11, where ε = −h, for

h = 1, 2, and ε = −2, for h = 3, ..., q + 1.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 5 6 8 10 12

10 15 16 18 21 23 26 28 31 34 38

20 41 44 47 50 54 57 61 65 68 72

30 76 80 85 87 90 94 99 104 109 114

40 120 124 129 134 139 144 150 156 162 168

50 175 176 178 181 185 188 192 195 199 203

60 207 212 216 221 226 231 235 240 245 250

70 255 260 265 270 275 280 285 291 296 301

80 306 311 317 323 329 334 340 346 352 357

90 363 368 374 379 385 391 398 404 410 416

100 422 428 434 440 446 452 458 464 470 476

110 483 489 495 501 508 514 520 526 532 538

120 544 551 558 565 571 578 584 590 596 603

130 610 617 623 630 637 644 651 658 665 672

140 679 686 693 700 707 714 721 728 735 742

150 749 756 763 770 777 784 791 798 805 812

160 819 826 834 841 849 856 863 871 878 886

170 893 901 909 917 925 933 941 948 956 963

180 971 979 986 994 1001 1009 1017 1025 1033 1041

190 1049 1057 1065 1073 1081 1089 1097 1105 1113 1121

200 1129

Table 4.1: Known lower bounds on ex(n; 4), from tables printed in [66]. Exact values, when
known, are listed in bold font.

(iii) f4(2q2 + q − h) ≥ q2(q + 1) + (q + 1)f4(q)− h(q + 1), for q ≥ 13 and h = 1, 2, . . . q2.

Using our GAP algorithm we obtained further improvements on many of the lower bounds on

ex(n; 4) shown in Tables 4.1 and 4.2. Our improvements are shown in Table 4.3. The graphs

that we used as seed graphs for our algorithm are the (k, 5)-cages, for 3 ≤ k ≤ 7 and the

(k, 5)-graphs, for 8 ≤ k ≤ 12, (see Table 3.1). The (k, 5)-graphs produce the lower bounds on

ex(n; 4) shown in Table 4.3, for n = 80, 90, 126, 156 and 203.

A compilation of the current best known upper and lower bounds on ex(n; 4), for n ≤ 200

is given in Appendix B Table B.1. Note that exu(n; 4) − exl(n; 4) ≤ 7, for n ≤ 50 and we

suspect that some of these lower bounds may be extremal. For this reason, we were particularly

pleased to be able to improve the lower bounds on ex(35, 4) and ex(45; 4), although we only

increased the lower bound by one. On the other hand, although we were able to increase the

lower bounds on ex(100; 4) and ex(200; 4) by 21 and 44 respectively, the difference between the
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n 0 1 2 3 4 5 6 7 8 9

100 448 456

110

120 592 600 608

130 616 624 632 640 648 657 666 669 672 675

140

150 792 801 810 819

160 828 838 847 846 865 874 883 892 901 910

170 920 930 932 935 938 941 944

Table 4.2: Improved lower bounds on ex(n; 4) obtained by the constructions in Theorem 4.4.

current best known upper and lower bounds is still large, namely, 443 ≤ ex(100; 4) ≤ 497 and

1184 ≤ ex(200; 4) ≤ 1410.

The graph that provides the improved lower bound exl(35, 4) = 95 was obtained by running our

Prune algorithm using the (6, 5)-cage as input. Similarly, using the Hoffman-Singleton graph

as a seed graph we improved the lower bound exl(45; 4) = 145. It is interesting to note that

our Prune algorithm, when given the Hoffman-Singleton graph as input produces the (6, 5) and

(5, 5)-cages.

4.5 New Families of Extremal Graphs

In this section we present some constructions of graphs that form infinite families of extremal

graphs. In order to prove that these graphs are extremal we require the recent results by Abajo

and Diánez [2] given in Theorems 4.5 and 4.6. Applying these theorems determines the exact

value of the extremal number, for t ≥ 4 and n ≤ b(16t− 15)/5c.

Abajo and Diánez [2] established the extremal number, for t ≥ 4 and n ≤ b(16t− 15)/5c, as

follows. Let k ≥ 0 be an integer, then, for each t ≥ 2 log2 (k + 2) there exists n such that

every extremal graph G with m − n = k has minimum degree at most 2, and is obtained by

adding vertices of degree 1 and/or subdividing a graph or a multigraph H with δ(H) ≥ 3 and

|E(H)| − |V (H)| = k.

Theorem 4.5 [2] Let n ≥ 4 be an integer. Then

(i) v0(t) = t+ 1

(ii) v1(t) = b3t/2c+ 1

(iii) v2(t) = 2t

(iv) v3(t) =

{
d9t/4e if t is even;

b9t/4c if t is odd.
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n 0 1 2 3 4 5 6 7 8 9

30 95

40 145

50

60

70 271 278 285 291 298 305 312

80 320 322 327 334 341 348 355 362 369 376

90 384 392 399 407 415 423 432 436 438 440

100 443 445 447 450 452 458 465 472 480 488

110 496 504 512 520 528 536 544 552 560 568

120 576 585 593 602 611 620 630 634 638 641

130 644 647 650 653 657 666 674 683 692 700

140 709 717 726 735 744 753 762 771 780 789

150 798 808 817 827 837 847 858 862 865 868

160 871 873 875 878 880 883 886

170 949 958 968 977

180 986 995 1004 1013 1022 1032 1042 1052 1062 1072

190 1082 1092 1102 1112 1122 1132 1142 1152 1163 1173

200 1184 1195 1206 1218 1223 1227 1231 1236 1240 1245

Table 4.3: ♦ Improved lower bounds on ex(n; 4) produced by application of our GAP algorithm.

(v) v4(t) =

{
d(8t− 2)/3e if t 6= 4 is even;

b(8t− 2)/3c if t is odd.

(vi) v5(t) =

{
3t− 2 if t 6= 6;

3t− 1 if t = 6.

(vii) v6(4) = 12, v6(5) = 14, v6(6) = 19, v6(7) = 21,

d(16t− 14)/5e ≤ v6(t) ≤
{
d(10t− 5)/3e if t 6= 8 is even;

b(10t− 6)/3c if t ≥ 9 is odd.

The values of vk(t) given in Theorem 4.5 are used by Theorem 4.6 to determine ex(n; t), for

n ≤ b(16t− 15)/5c.

Theorem 4.6 [2] Let t ≥ 4 and k ≥ 0 be integers. If vk(t) ≤ n < vk+1(t), then ex(n; t) = n+k.

It was suggested by Abajo and Diánez [2] that part of the study of extremal graphs can be

restricted to determining graphs or multigraphs whose subdivision produces extremal graphs.

Subsequently, Balbuena, Cera, Diánez and Garćıa-Vázquez [14] found that subdividing the

complete bipartite graphs K3,3 produces an extremal graph G ∈ EX(15; 7). In the following

theorems, we use current known extremal numbers, which can be calculated by application of

Theorem 4.5 and Theorem 4.6, to prove that subdivision of the Petersen graph; the complete
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graphs K2, K3 and K4; and the complete bipartite graphs K2,3, K3,3 and K3,4; form infinite

families of extremal graphs. Furthermore, we prove that subdivision of the Heawood and Tutte-

Coxeter graphs produces extremal graphs, thereby, establishing two infinite series of previously

unknown extremal numbers.

Recall from Section 2.3, given a graph G of order n and size m and girth g, the subdivided

graph siG has order n+mi size m(1 + i) and girth g(1 + i).

♦ Theorem 4.7 The subdivided Petersen graphs, siP , are an infinite family of extremal graphs

siP ∈ EX(10 + 15i; 4 + 5i) and ex(10 + 15i; 4 + 5i) = 15 + 15i, for i ≥ 0.

Proof. Garnick, Kwong and Lazebnik [66] showed that the Petersen graph is the unique ex-

tremal graph, for n = 10 and t = 4, that is, EX(10; 4) = {P} and ex(10; 4) = 15. The

subdivided Petersen graph siP has order n = 10 + 15i, girth g = 5 + 5i and size m = 15 + 15i.

Let t = g − 1 = 4 + 5i. Then applying Theorem 4.5 (vi), we have v5(4 + 5i) = 3(4 + 5i)− 2 =

10 + 15i = n. Then, by Theorem 4.6, we know that ex(10 + 15i; 4 + 5i) = n + 5 = 15 + 15i.

Therefore, siP ∈ EX(10 + 15i; 4 + 5i).

♦ Theorem 4.8 The subdivided complete graphs, siK2, siK3 and siK4, for i ≥ 1 form infinite

families of extremal graphs.

(i) siK2 ∈ EX(2 + i; t) and ex(2 + i; t) = 2 + i− 1, for 3 ≤ t ≤ n.

(ii) siK3 ∈ EX(3 + 3i; t) and ex(3 + 3i; t) = 3 + 3i, for t+ 1 ≤ n ≤ b3t/2c and i ≥ 1.

(iii) siK4 ∈ EX(4 + 6i; 2 + 3i) and ex(4 + 6i; 2 + 3i) = 6 + 6i, for i ≥ 1.

Proof. (i) For i = 0, the complete graph K2 is the path on two vertices and is known to be

extremal EX(2; t) = {K2}, for 3 ≤ t ≤ n and ex(2; t) = 1. Subdividing K2 by i adds i edges

and i vertices and the graph retains the property of being acyclic. Therefore, siK2 = P2+i ∈
EX(2 + i; t) and ex(2 + i; t) = 2 + i− 1, for 3 ≤ t ≤ n.

(ii) For i = 1, the subdivided complete graph s1K3 = C6 which is the extremal graph C6 ∈
EX(6; t), for t+1 ≤ n. Each subdivision of the graph adds 3 edges and 3 vertices and increases

the girth by three. Thus creating the cycles siK3 = C3+3i ∈ EX(3 + 3i; t) which are known to

be extremal, for t+ 1 ≤ n ≤ b3t/2c.

(iii) The graph K4 has 4 vertices, 6 edges and girth 3. Subdividing K4 by i adds 6i vertices,

6i edges and increases the girth by 3i. Thus |V (siK4)| = 4 + 6i, |E(siK4)| = 6 + 6i and the

girth is g(siK4) = 3 + 3i. Since t ≤ g − 1 = 3 + 3i − 1 = 2 + 3i. We need to show that

ex(4 + 6i; 2 + 3i) = 6 + 6i. Notice that n = 4 + 6i = 2(2 + 3i) = 2t. Applying Theorem 4.5 (ii)

and Theorem 4.6 if n = v2(t) = 2t, then ex(n; t) = n+ 2 as required.
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It is easily determined that the subdivided complete graphs siKn, for n ≥ 5 are not extremal,

for example, s1K5 has order 15, size 20 and girth 6 while ex(15; 5) = 22.

♦ Theorem 4.9 The subdivided complete bipartite graphs, siK2,3, siK3,3 and siK3,4 form

infinite families of extremal graphs and,

(i) siK2,3 ∈ EX(5 + 6i; 3 + 4i) and ex(5 + 6i; 3 + 4i) = 6 + 6i.

(ii) siK3,3 ∈ EX(6 + 9i; 3 + 4i) and ex(6 + 9i; 3 + 4i) = 9 + 9i.

(iii) siK3,4 ∈ EX(7 + 12i; 3 + 4i) and ex(7 + 12i; 3 + 4i) = 12 + 12i.

Proof. (i) For i = 0, the fact that K2,3 is extremal is a direct result of Mantel’s theorem and

K2,3 ∈ EX(5, 3). Furthermore, |V (K2,3)| = 5, |E(K2,3)| = 6 and g(K2,3) = 4. Subdividing

K2,3 by i adds 6i vertices and 6i edges and increases the girth by 4i. Applying Theorem 4.5 (i)

and Theorem 4.6 if n = v1(t) = b3(3 + 4i)/2c+ 1 = 4 + 6i+ 1 = 5 + 6i, then ex(n; t) = n+ 1,

therefore ex(5 + 6i; 3 + 4i) = 6 + 6i as required.

(ii) For i = 0, the fact that K3,3 is extremal is a direct result of Mantel’s theorem and K3,3 ∈
EX(6, 3). Furthermore, |V (K3,3)| = 6, |E(K3,3)| = 9 and g(K3,3) = 4. Subdividing K3,3 by

i adds 9i edges and 9i vertices and increases the girth by 4i. Applying Theorem 4.5 (vi), for

t 6= 6 and Theorem 4.6 if n = 6+9i ≤ b9t/4c = b9(3+4i)/4c = 27/4+9i, then ex(n; t) = n+3.

Therefore, ex(6 + 9i; 3 + 4i) = 9 + 9i as required.

(iii) For i = 0, the fact that K3,4 is extremal is a direct result of Mantel’s theorem and

K3,4 ∈ EX(7, 3). Furthermore, |V (K3,4)| = 7, |E(K3,4)| = 12 and g(K3,4) = 4. Subdividing

K3,4 by i adds 12i edges and 12i vertices and increases the girth by 4i. Applying Theorem

4.5 (vi), for t 6= 6 and Theorem 4.6 if n = 7 + 12i ≤ 3t − 2 = 3(3 + 4i) − 2 = 7 + 12i, then

ex(n; t) = n+ 5. Therefore, ex(7 + 12i; 3 + 4i) = 12 + 12i as required.

The subdivided complete bipartite graph s1K4,4 is extremal, that is, s1K4,4 ∈ EX(24; 7) and

ex(24; 7) = 32. The graph s2K4,4 gives the lower bound exl(40; 11) = 48 and the upper bound

due to the Moore bound for irregular graphs is exu(40; 11) = 49 so there is a good chance that

this graph is extremal. However, it is not yet known if the graphs siK4,4, for i 6= 1 are extremal

or not.

The above theorems make use of known extremal numbers to prove that the subdivided graphs

are extremal. In the following theorems we show that the subdivided Heawood graph and the

Tutte-Coxeter graph are infinite families of extremal graphs. Correspondingly, we establish two

infinite series of previously unknown extremal numbers.
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♦ Theorem 4.10 The subdivided Heawood graphs, siH, are an infinite family of extremal

graphs siH ∈ EX(14 + 21i; 5 + 6i) and ex(14 + 21i; 5 + 6i) = 21 + 21i.

Proof. For i = 0, the Heawood graph is a Moore cage and therefore extremal and the corre-

sponding extremal number is ex(14; 5) = 21. Subdividing the Heawood graph by i ≥ 1 adds

21i edges and 21i vertices and increases the girth by 6i. Lower bounds on the extremal number

due to this construction are ex(14 + 21i; 5 + 6i) ≥ 21 + 21i.

The girth of siH is g = 6i + 6 and the average degree is d = 2(21 + 21i)/(14 + 21i) =

(6 + 6i)/(2 + 3i). Substituting these values into the Moore bound for irregular graphs by Alon,

Hoory and Linial we have

2

3i+2∑
k=0

((6 + 6i)/(2 + 3i)− 1)k < 14 + 21i

Assume ex(14 + 21i; 5 + 6i) > 21 + 21i. Then,

2

3i+2∑
k=0

(2(22 + 21i)/(14 + 21i)− 1)k < 14 + 21i

Which is impossible. Therefore, ex(14 + 21i; 5 + 6i) = 21 + 21i as required.

♦ Theorem 4.11 The subdivided Tutte-Coxeter graphs, siTC, are an infinite family of ex-

tremal graphs siTC ∈ EX(30 + 45i; 7 + 8i) and ex(30 + 45i; 7 + 8i) = 45 + 45i.

Proof. For i = 0, the Tutte-Coxeter graph, or (3,8)-cage, is a Moore cage and therefore

extremal and the corresponding extremal number is ex(30; 7) = 45. Subdividing the Tutte-

Coxeter graph by i ≥ 1 adds 45i edges and 45i vertices and increases the girth by 8i. Lower

bounds on the extremal number due to this construction are ex(30 + 45i; 7 + 8i) ≥ 45 + 45i.

The girth of siTC is g = 7 + 8i and the average degree is d = 2(45 + 45i)/(30 + 45i) =

(6 + 6i)/(2 + 3i). Substituting these values into the Moore bound for irregular graphs by Alon,

Hoory and Linial we have

2

4i+3∑
k=0

((6 + 6i)/(2 + 3i)− 1)k < 30 + 45i
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Assume ex(30 + 45i; 7 + 8i) > 45 + 45i. Then,

2

4i+3∑
k=0

(2(46 + 45i)/(30 + 45i)− 1)k < 45 + 45i

Which is impossible. Therefore, ex(30 + 45i; 7 + 8i) = 45 + 45i as required.

4.6 ex(n; t), for t ∈ {5, 6, 7}

Abajo and Diánez [2] determined the exact values of: ex(n; 5), for n ≤ 13; ex(n; 6), for n ≤
16; and ex(n; 7), for n ≤ 19. Perhaps motivated by this progress, Tang, Lin, Balbuena and

Miller [118] used hybrid simulated annealing and genetic algorithm to produce constructive

lower bounds on the function ex(n; t), for t ∈ {5, 6, 7} and n ≤ 39. Subsequently, Abajo and

Diánez [3], confirmed the lower bounds generated by Tang, Lin, Balbuena and Miller [118] to

be the exact values of ex(n ≤ 27; 5), ex(n ≤ 28; 6) and ex(n ≤ 34; 7). Furthermore, the same

authors developed a greedy algorithm that makes use of a good graph and adds paths and

subdivides arbitrary edges to create new graphs. Using this algorithm they improved the lower

bounds on: ex(n; 5), for 28 ≤ n ≤ 62; ex(n; 6), for 29 ≤ n ≤ 49; and ex(n; 7), for 35 ≤ n ≤ 80.

Moreover, authors of [3] proved that a number of the lower bounds generated by their algorithm

were, in fact, extremal. In particular: ex(n; 5), for 28 ≤ n ≤ 42 and n = 62; and ex(n; 7), for

n = 35, 36, 160. Subsequently, Tang, Lin, Balbuena and Miller [119] proved that ex(29; 6) = 45.

Delorme, Flandrin, Lin, Miller and Ryan [44] provided sketches of proofs, for ex(29; 6) = 45,

ex(30; 6) = 47 and ex(31; 6) = 49. More recently, Abajo, Balbuena and Diánez [1] provided

further improved lower bounds on ex(n; 6), for n ≤ 300.

The above mentioned results are summarised in Tables 4.4, 4.6 and 4.8.

Using knowledge of the extremal number, ex(24; 6), Abajo and Diánez [3] were able to prove

that the McGee graph is the unique extremal graph, for EX(24; 6). Using the same line of

reasoning we show that the Heawood and Tutte-Coxeter cages are unique extremal graphs, for

EX(14; 5) and EX(30; 7), respectively.

♦ Corollary 4.1 The Heawood graph is the unique extremal graph, for EX(14; 5).

Proof. From Table 4.4 we know that ex(14; 5) = 21. Therefore, the average degree of the

graph G ∈ EX(14; 5) is 3. Using Observation 4.4 and the value of ex(13; 5) from Table 4.4 we

know that ex(14; 5) − ex(13; 5) = 21 − 18 = 3 ≤ δ. Therefore, G is 3-regular. The Heawood

graph is the (3,6)-cage which is the point-line incidence graph of the generalised triangle as

shown in Figure 2.7. This graph is known to be unique [56].
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♦ Corollary 4.2 The Tutte-Coxeter cage is the unique extremal graph, for EX(30; 7).

Proof. From Table 4.8 we know that ex(30; 7) = 45. Therefore, the average degree a graph

G ∈ EX(30; 7) is 3. Using Observation 4.4 and the value of ex(29; 7) from Table 4.8 we know

that ex(30; 7)− ex(29; 7) = 45− 42 ≤ 3. Therefore, G is 3-regular. The Tutte-Coxeter cage is

the (3,8)-cage which is the point-line incidence graph of the generalised quadrangle of order 2.

This graph is known to be unique [56].

4.6.1 ex(n; 5)

Our GAP algorithm provided no improvements on the current best known upper and lower

bounds on ex(n; 5), for n ≤ 62 that are summarised in Table 4.4. We are not particularly

disheartened by this result since there are only 19 values of n in this range for which the

extremal number is not yet known. Furthermore, exu(n; 5) − exl(n; 5) ≤ 7, for n ≤ 62 which

indicates that these bounds are already quite tight. Nevertheless, we were able to generate new

lower bounds on ex(n; 5), for 63 ≤ n ≤ 200.

n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 7 8 9 10

10 12 14 16 18 21 22 24 26 29 31

20 34 36 39 42 45 48 52 53 56 58

30 61 64 67 70 74 77 81 84 88 92

40 96 100 105 106-108 108-112 110-116 114-119 118-123 122-127 125-131

50 130-135 134-139 138-143 142-147 147-151 151-155 156-160 160-164 165-168 170-172

60 175-177 180-181 186

Table 4.4: Known upper and lower bounds on ex(n; 5) as given in [1]. Exact values, when
known, are listed in bold font.

The graphs that were used as input for our GAP algorithm for the new lower bounds on ex(n; 5)

were the (k, 6)-cages, for 6 ≤ k ≤ 10. With the exception of the (7,6)-cage, these graphs are

the incidence graphs of the generalised triangles which are Moore cages and, consequently,

extremal. Thus, ex(114; 5) = 456, ex(146; 5) = 657 and ex(182; 5) = 910. The (7,6)-cage

gives the new lower bound ex(90; 5) ≥ 315. Furthermore, we used Brown’s [8] construction for

Hamiltonian regular graphs of girth six, for k = 10, which produces a (10,6)-graph of order

200 which attains the current best known lower bound on ex(200; 6). We used knowledge of

the girth and degree regularity of Brown’s graph to manually calculate new lower bounds on
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ex(n; 5), for 192 ≤ n ≤ 200. The new best known lower bounds on ex(n; 5) generated by our

GAP algorithm using the above mentioned seed graphs are given in Table 4.5.

n 0 1 2 3 4 5 6 7 8 9

60 187 189 191 193 195 199 204

70 208 212 217 222 227 232 237 242 247 252

80 257 262 268 273 279 284 290 296 302 308

90 315 318 322 325 329 334 339 344 350 356

100 362 368 375 381 388 394 401 407 414 420

110 427 434 441 448 456 457 459 461 463 465

120 467 469 475 482 489 496 504 511 519 526

130 534 541 549 556 564 571 579 586 594 601

140 609 616 624 632 640 648 657 658 660 662

150 664 666 668 670 672 679 687 695 703 711

160 720 728 737 745 754 762 771 779 788 796

170 805 813 822 830 839 847 856 864 873 882

180 891 900 910 911 913 915 917 919 921 923

190 925 927 929 937 946 954 963 972 981 990

200 1000

Table 4.5: ♦ New lower bounds on ex(n; 5) produced by application of our GAP algorithm.

A compilation of the current best known upper and lower bounds on ex(n; 5), for n ≤ 200 is

given in Appendix B Table B.2. Note that the difference between the current best known upper

and lower bounds on ex(n; 5) is quite small in comparison to those of ex(n; 4), for example,

exu(100; 4) − exl(100; 4) = 54 compared to exu(100; 5) − exl(100; 5) = 14 and exu(200; 4) −
exl(200; 4) = 226 compared to exu(200; 5) − exl(200; 5) = 46. Furthermore, when ex(n; 5) is

known then exu(n+ 1; 5)− exl(n+ 1; 5) ≤ 6 and exu(n− 1; 5)− exl(n− 1; 5) ≤ 2.

4.6.2 ex(n; 6)

Recently, Abajo, Balbuena and Diánez [1] constructed some infinite families of graphs that

produce the current best known lower bounds on ex(n; 6). The bounds produced by these

constructions are given in Theorem 4.12. These values include the extremal numbers ex(24; 6) =

36, ex(26; 6) = 39 and the current best known lower bounds exl(72; 6) = 147, exl(75; 6) = 152,

exl(160; 6) = 408 and exl(162; 6) = 415. Furthermore, Abajo, Balbuena and Diánez generated

new lower bounds on ex(n; 6), for n ≤ 300. In Table 4.6 we have collated these new lower

results with those previously mentioned.

Theorem 4.12 [1] Let f6(n) = ex(n; 6) and q ≥ 3 be a prime power. Then

(i) f6(2q3 + 2q2 + q) ≥ q2(q + 1)2 + (q + 1)f6(q).
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(ii) f6(2(q3 + q2)) ≥ q4 + 2q3 + 2f6(q).

(iii) f6(2(q3 + q2)− h) ≥ q4 + 2q3 + 2f6(q)− h(q + 1), for all h = 1, 2, . . . q3.

In Table 4.7 we list the improved lower bounds on ex(n; 6) produced by our GAP algorithm.

We used the (4,7)-cage and (5,7)-graph on 152 vertices, which provides the current best known

upper bound on n(5, 7), as input graphs.

In the following theorems we determine the previously unknown extremal number ex(n; 6), for

n = 30, 31, 32. In order to do this we adopt the following strategy.

1. Determine the current best known lower bound on exl(n; t) from Tables 4.6 and 4.7

2. Assume the existence of a graph G ∈ EX(n; t) of order exl(n; t) + 1.

3. Determine a number of necessary structural properties of G that we then use to prove

that G does not exist.

4. Apply Abajo and Diánez’s [3] observation that proving the non-existence of a graph of

order exl(n; t) + 1 and girth g > t is sufficient to prove ex(n; t) ≤ exl(n; t).

5. Conclude that exl(n; t) = ex(n; t).

We use the notation introduced in Section 4.1, namely, T∆,δ,t denotes the tree having height

b(t+ 1)/2c and root r such that deg(r) = ∆, the leaves have degree 1, and every other vertex

v 6= r has deg(v) = δ. Since g ≥ t+ 1, every G ∈ EX(n; t) must contain T∆,δ,t as a subgraph.

Furthermore,

|V (G)| ≥ |V (T∆,δ,t)| =
{

1 +
∑t/2
i=1 ∆(δ − 1)i−1 for even t,

1 +
∑(t−1)/2
i=1 ∆(δ − 1)i−1 + (δ − 1)(t−1)/2 for odd t.

We use X to denote the set of vertices X = V (G − T∆,δ,t). We use the notation T∆,δ,t(F)

to represent the tree T∆,δ,t with additional forbidden subgraph constraints, that is, if F ⊂ F
then F * T∆,δ,t. We use the term n-star and notation Sn to mean the complete bipartite graph

K1,n−1. The path on k vertices such that all k vertices in the path have degree j in G is denoted

P jk .

In the following two theorems we provide full proofs, for ex(30; 6) = 47 and ex(31; 6) = 49.

Sketches of proofs for these values were given by Delorme, Flandrin, Lin, Miller and Ryan [44].

♦ Lemma 4.1 Assume ex(30; 6) = 48 and let G ∈ EX(30; 6). Then

(i) The minimum degree is 3 and the maximum degree is 4.

(ii) There are six vertices of degree 4 and twenty-four vertices of degree 3 in G.

(iii) Let r be a vertex of degree 4. Then there is at most one vertex of degree 4 at distance 2

from r. All other vertices of degree 4 are at distance 3 or more from r.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 7 8 9

10 11 12 14 15 17 18 20 22 23 25

20 27 29 31 33 36 37 39 41 43 45

30 47-49 48-52 50-54 52-56 55-58 57-61 59-63 61-65 62-68 64-70

40 67-73 69-75 71-77 73-80 75-82 77-85 80-87 82-90 84-92 87-95

50 89 91 93 95 97 99 102 105 107 109

60 112 115 117 120 123 125 128 131 134 137

70 140 143 147 148 150 152 154 156 158 160

80 162 164 166 168 171 174 176 178 180 182

90 184 186 188 190 193 196 198 201 204 206

100 209 212 214 217 220 223 225 228 231 234

110 237 240 243 246 249 252 255 258 261 265

120 268 271 274 278 281 284 287 291 294 297

130 301 305 308 311 314 317 320 323 327 330

140 333 337 340 343 347 351 354 357 361 365

150 368 372 376 369 383 387 391 395 399 403

160 408 409 411 413 415 417 419 421 423 425

170 427 429 431 433 435 437 439 441 443 445

180 447 449 451 453 455 458 460 462 464 467

190 469 471 473 475 478 482 485 489 492 496

200 499 503 506 510 513 517 520 524 527 531

210 535 539 543 546 550 554 558 561 565 569

220 573 577 581 585 588 592 596 600 604 608

230 612 616 620 624 628 632 636 640 644 648

240 652 656 660 664 668 672 676 680 684 688

250 693 697 701 705 709 714 718 722 726 730

260 734 738 742 746 751 755 759 763 768 772

270 776 781 785 789 794 798 802 807 811 816

280 820 825 829 833 838 843 847 851 856 861

290 865 870 875 879 884 889 894 899 904 909

300 915

Table 4.6: Known upper and lower bounds on ex(n; 6), for n ≤ 16 from [2], for 17 ≤ n ≤ 28
from [3] and ex(29; 6) = 45 [119]. Exact values, when known, are listed in bold font.
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n 0 1 2 3 4 5 6 7 8 9

30 49 51 53 58 63 65

40 78 81 83 86 88

50 91 93 95 97 100 102 104 106 108 110

60 118 121 124 127 130 134 136 138

140 344 348 352 355 359 363 367

150 371 375 380 382 384

Table 4.7: ♦ Improved lower bounds on ex(n; 6) produced by application of our GAP algorithm.

Proof. (i) We know ex(29; 6) = 45 from Table 4.6. Applying Inequality 4.5,

ex(30; 6)− ex(29; 6) = 48− 45 = 3 ≤ δ ≤ 3 = b(48× 2)/30c ≤ d(48× 2)/30e = 4 ≤ ∆

gives δ = 3 and ∆ ≥ 4. Therefore, G contains the tree T∆,3,6 as a subgraph and

|V (G)| = 30 ≥ |V (T∆,3,6)| = 1 + |N(r)|+ |N2(r)|+ |N3(r)| = 1 + ∆ + 2∆ + 4∆ = 1 + 7∆.

Therefore, ∆ = 4.

(ii) Let x be the number of vertices of degree 3 in G and y the number of vertices of degree 4.

Then x + y = 30 and 3x + 4y = 48 × 2 = 96. Solving these equations determines that there

are twenty-four vertices of degree 3 and six vertices of degree 4, thus the degree sequence is

D= (46, 324).

(iii) Since ∆ = 4 and δ = 3, the tree T4,3,6 is a subgraph of G. Therefore, |V (G)| = 30 ≥
|V (T4,3,6)| = 29 and X = V (G − T4,3,6) = {x}. Assume x ∈ N(r). Then deg(r) = 5 which

is impossible because ∆ = 4. Assume x ∈ N2(r). Then |V (G)| = 30 ≥ ∑3
i=0 |Ni(r)| =

1 + 4 + 9 + 18 = 32. Assume x ∈ N3(r) (see Figure 4.2). Then there is one vertex u of degree

4 in N2(r) and the other four vertices of degree 4 must be in N3(r). Furthermore if x ∈ N4(r),

then all vertices of degree 4 are at distance 3 or more from r.

♦ Theorem 4.13 Let G ∈ EX(30; 6). Then ex(30; 6) = 47.

Proof. The new lower bound on ex(30; 6) due to our GAP algorithm is exl(30; 6) = 47 (see

Table 4.7). Assume ex(30; 6) = 48. Then by Lemma 4.1 the degree sequence is D= (46, 324)

and the tree T4,3,6 is a subgraph of G. Consider the six vertices that have degree 4 in G as S5

structures, as shown in Figure 4.3. From Lemma 4.1 (iii) there is at most one vertex, u, such

that, deg(u) = 4 and d(u, r) = 2.
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r

u

x

Figure 4.2: T4,3,6 with one additional vertex of degree 4.

r ur1 u1

Figure 4.3: Six S5 structures.

Assume that the distance between any two vertices of degree 4 in G is at least 3. Then the

six 5-stars are distinct and unique and there are exactly 6 × 5 = 30 vertices and 6 × 4 = 24

edges in these structures. There is at most one edge between each pair of 5-stars, otherwise

a cycle of length 6 is formed, that is, 5+4+3+2+1=15 edges between the six 5-stars. Let H
denote the graph that is composed of six 5-stars with an edge between each pair of 5-stars.

Then |V (H)| = 30 and|E(H)| = 24 + 15 = 39.

Assume that there is one vertex u of degree 4, such that, d(u, r) = 2 in G. This is equivalent to

beginning with the graph H and contracting an edge between one pair of 5-stars as illustrated

by the dotted line, labeled r1u1 in Figure 4.3. Let H′ be the graph obtained by contracting an

edge in H. Then |V (H′)| = |V (H′ − {x})| = 30 − 1 = 29 and |E(H′)| = |E(H′ − {r1u1})| =

39− 1 = 38 and there is one vertex x /∈H′ such that deg(x) = 3. Then, |V (H′ ∪ {x})| = 30 and

|E(H′ ∪ {x})| = 38 + 3 = 41
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Therefore, ex(30; 6) = 47.

We can use the results of Theorem 4.13, that is, ex(30; 6) = 47 to lower the upper bounds

on ex(31; 6) = 51 as follows. We know that 49 ≤ ex(31; 6) ≤ 51 (see Table 4.6). Assume

ex(31; 6) = 51.Then applying Inequality 4.4, ex(31; 6) − δ ≤ ex(30; 6), determines that δ ≥
51−47 = 4. Applying Inequality 4.3, δ ≤ 3 = b(51× 2)/31c which is a contradiction. Therefore,

49 ≤ ex(31; 6) ≤ 50.

Although this is a useful technique, we prefer, where possible, to generate lower bounds that

are equal to the extremal number and use the observation of Abajo and Diánez [3], namely, in

order to prove ex(n; t) ≤ m it is sufficient to prove the non-existence of a graph of order m+ 1

and girth g > t. Therefore, in the following lemma we assume that ex(31; 6) = 50.

♦ Lemma 4.2 Assume ex(31; 6) = 50 and let G ∈ EX(31; 6) then

(i) The minimum degree is 3 and the maximum degree is 4.

(ii) There are seven vertices of degree 4 and twenty-four vertices of degree 3 in G.

(iii) A vertex of degree 4 has no neighbours of degree 4.

(iv) Given a vertex r in G, such that deg(r) = 4, there are at most two vertices of degree 4 at

distance 2 from r.

Proof. (i) We know ex(30; 6) = 47 from Theorem 4.13. Applying Inequality 4.5,

ex(31; 6)− ex(30; 6) = 50− 47 = 3 ≤ δ ≤ 3 = b(50× 2)/31c ≤ d(50× 2)/e = 4 ≤ ∆

Therefore, δ = 3 and ∆ ≥ 4. Then T∆,3,6 is a subgraph of G and |V (G)| = 31 ≥ |V (T∆,3,6)| =
1 + 7∆. Therefore, ∆ = 4.

(ii) Let x be the number of vertices of degree 3 in G and y be the number of vertices of degree

4. Then x+ y = 31 and 3x+ 4y = 100. Solving these equations we obtain the degree sequence

D= (47, 324).

(iii) Assume G contains two vertices of degree 4 that are neighbours. Then G has a subgraph

which is a tree of height 3, with root vertex r such that deg(r) = 4 and another vertex u ∈ N(r)

such that deg(u) = 4 and all other vertices in T have degree 3. Then |V (G)| ≥ |V (T )| =

1 +N(r) +N2(r) +N3(r) = 1 + 4 + 9 + 18 = 32. A contradiction. Therefore, a vertex of degree

4 has no neighbours of degree 4.
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(iv) AssumeG contains three vertices of degree 4 at distance 2 from a vertex r, where deg(r) = 4.

Then
3∑
i=0

|Ni(r)| = 1 + 4 + 8 + 19 = 32.

Impossible. Therefore, there are at most two vertices of degree 4 at distance 2 from a vertex r,

such that deg(r) = 4.

♦ Theorem 4.14 Let G ∈ EX(31; 6). Then ex(31; 6) = 49.

Proof. Assume ex(31; 6) = 50. Then by Lemma 4.2 (ii) the degree sequence of G is D=

(47, 324) and there are seven S5 structures in G. There are 7 x 4 = 28 edges in the seven S5

structures. There is at most one edge between every pair of S5 structures, otherwise a cycle

of length 6 is formed. Therefore, there are, at most 6+5+4+3+2+1=21 edges between the

structures. Let H denote the graph that is composed of seven 5-stars with an edge between

each pair of 5-stars. Then |V (H)| = 35 and |E(H)| = 28 + 21 = 49.

Since |V (H)| = 35 the vertices of the 5-stars are not distinct and unique. Therefore, at least

four of the vertices in the S5 structures must be “shared”. Lemma 4.2 (iii) asserts that no two

vertices of degree 4 are neighbours. Therefore, “sharing” a vertex is equivalent to contracting

an edge between a pair of S5 structures in H.

By Lemma 4.2 (iv), given a vertex r ∈ G such that deg(r) = 4, there are at most two vertices

of degree 4 at distance 2 from r. If every vertex of degree 4 has two vertices of degree 4 at

distance 2, then the vertices of degree 4 lie on a cycle of length 14, where the degrees of the

vertices alternate between vertices of degree 3 and vertices of degree 4.

Therefore, there are at least four and at most seven shared vertices. Let H−i denote the graph

that is the graph H with i of the edges between vertices of degree 3 contracted.

Assume there are 4 shared vertices. Then |V (H−4)| = 35−4 = 31 and |E(H−4)| = 49−4 = 45.

Assume there are 5 shared vertices. Then |V (H−5)| = 35− 5 = 30 and |E(H−5)| = 49− 5 = 44

and there is one vertex of degree 3 that is not included in these structures. This vertex can

contribute at most 3 extra edges to G. Therefore, there are at most 44+3=47 edges in G.

Assume there are 6 shared vertices. Then |V (H−6)| = 35− 6 = 29 and |E(H−6)| = 49− 6 = 43

and there are two vertices of degree 3 that are not in these structures. These vertices contribute

at most 6 additional edges. Therefore, in total there are at most 43+6=49 edges.

Assume there are 7 shared vertices. Then there is a cycle of length 14 in the graph such that

every vertex of degree 3 has two neighbours of degree 4 and every vertex of degree 4 has two
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neighbours of degree 3 on this cycle. In such a graph there are at most 7 × 4 = 28 edges in

the S5 structures and 4 + 3 + 2 + 1 = 10 between the leaves of the S5 structures and another

3× 3 = 9 edges from the remaining vertices of degree 3, that is, at most 28 + 10 + 9 = 47 edges.

Therefore ex(31; 6) = 49.

♦ Lemma 4.3 Assume ex(32; 6) = 52 and let G ∈ EX(32; 6) then

(i) The maximum degree is 4 and the minimum degree is 3.

(ii) There are eight vertices of degree 4 and twenty-four vertices of degree 3 in G.

(iii) No two vertices of degree 4 are neighbours.

(iv) A vertex of degree 3 has at most two neighbours having degree 4.

(v) There are eight vertices of degree 3 that have two neighbours having degree 4.

(vi) There are sixteen vertices of degree 3 that have one neighbour having degree 4.

(vii) There are no vertices of degree 3 adjacent only to vertices of degree 3.

Proof. (i) By Theorem 4.14 we know that ex(31; 6) = 49. Applying Inequality 4.5,

ex(32; 6)− ex(31; 6) = 52− 49 = 3 ≤ δ ≤ 3 = b(52× 2)/32c ≤ d(52× 2)/32e = 4 ≤ ∆

gives δ = 3 and ∆ ≥ 4. Then |V (G)| = 32 ≥ |V (T∆,3,6)| = 1 + 7∆. Therefore, ∆ = 4.

(ii) Let x be the number of vertices in G having degree 3 and y be the number of vertices of

degree 4. Then x + y = 32 and 3x + 4y = 104. Solving the equations we obtain the degree

sequence D= (48, 324).

(iii) Assume that vertices r1, r2 ∈ V (G) having deg(r1) = deg(r2) = 4 are neighbours. Then G

contains a subgraph which consists of an edge r1r2 and two trees Tr1 , Tr2 with respective roots

r1, r2 and r1 /∈ V (Tr2) , r2 /∈ V (Tr1). There are at least

|V (Tr2)| = |V (Tr1)| = 1 + |N(r1) ∩ V (Tr1)|+ |N2(r1) ∩ V (Tr1)| ≥ 1 + 3 + 6 = 10

vertices in each tree as shown in Figure 4.4. The vertices in each tree must be distinct and

edges exist only between parent and child vertices, otherwise a forbidden cycle is formed. Let

X be the set of remaining vertices X = {x1, x2, . . . x12}, where xi /∈ V (Tr1 ∪ Tr2). Let L be

the set of leaf vertices L = {l11, l12, . . . , l16, l21, l22, . . . , l26}, such that, l1k ∈ N2(r1) ∩ V (Tr1)

and l2k ∈ N2(r2) ∩ V (Tr2) Since δ = 3, each of the 12 leaf vertices have at least two distinct

neighbours in the set X. So there are at least 24 edges lj,kxi. However, each vertex xi can

have at most one neighbour in each of the subtrees Tr1 and Tr2 , otherwise a cycle of length six

or less is formed. So there are at most 24 edges xilj,k. Therefore, there are exactly 24 edges

between the leaves of Tr1 and Tr2 and the vertices in X. Therefore, |V (Tr2)| = |V (Tr1)|.
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l12 l13 l14 l15 l16 l21 l22 l23 l24 l25 l26l11

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

v11 v12 v13 v21 v22 v23

X

r1 r2 Tr2Tr1

Figure 4.4: The trees Tr1 and Tr2 and the set X as described in Lemma 4.3 (iii).

Since D = (48, 324) and deg(r1) = deg(r2) = 4, six of the vertices in X have degree 4 and

the remaining 6 have degree 3. Since each xi can only have 2 neighbours in N3(r), the other

neighbours must be in X. The only way to create the required degrees on the vertices xi is to

have three paths of length 3 in X, that is, 4 vertices and three edges. But this will create cycles

of length 5. Therefore, no two vertices of degree 4 can be neighbours.

(iv) Assume that there exists a vertex r ∈ G such that deg(r) = 3 and N(r) = {v1, v2, v3} such

that deg(v1) = deg(v2) = deg(v3) = 4. Then T the tree with root r and height 3 is a subgraph

of G. By item (iii) no two vertices of degree 4 are neighbours. Therefore, the neighbours of

vi have degree 3 and |V (T )| = 1 + 3 + 9 + 18 = 31 and X = V (G − T ) = {x}. Then x has at

most one neighbour in each set N3(r)∩N2(vi), for i = 1, 2 and 3, otherwise a cycle of length 6

is formed. Thus, deg(x) = 3. Let li be a leaf of T such that li ∈ N3(r) ∩N2(vi). Then li has

at most one neighbour in each set N3(r) ∩N2(vj) such that i 6= j and one neighbour x. Since

deg(x) = 3 there are at most 3 leaf vertices in T having degree 4. Then G contains at most 6

vertices of degree 4, namely, three leaf vertices that are neighbour of x and v1, v2, v3. However,

we know from (ii) that G contains eight vertices of degree 4. Therefore, a vertex of degree 3

has at most two neighbours having degree 4.

(v) By item (ii), G contains eight vertices of degree 4. Assume that these vertices are distinct

then G contains eight S5 structures and |V (G)| = 40. Therefore, there are 8 vertices that

are “shared” by the 5-stars. Items (iii) and (iv) assert that no two vertices of degree 4 are
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neighbours and a vertex of degree 3 has at most two neighbours having degree 4. Then, by

pigeonhole principle, every vertex of degree three has at least one neighbour of degree four and

eight vertices of degree 3 have exactly two neighbours with degree 4.

(vi) By item (iii), no two vertices of degree 4 are neighbours. Item (v) establishes that there

are eight vertices of degree 3 that have two neighbours having degree 4. Consequently, the eight

vertices of degree 3 take 8 × 2 = 16 of the edges adjacent to vertices of degree 4. However,

vertices of degree 4 are altogether adjacent to 8 × 4 = 32 vertices of degree 3. So there are

16 edges that have to be still allocated and they can only be connected to vertices of degree 3

which have only one degree 4 vertex in their neighbourhood.

(vii) By item (ii) there are twenty-four vertices of degree 3. Items (v) and (vi) assert that eight

vertices of degree 3 have exactly two neighbours with degree 4 and sixteen vertices of degree 3

that have one neighbour having degree 4. Therefore, there are no vertices of degree 3 adjacent

only to vertices of degree 3.

r

Figure 4.5: Illustration of the proof of Theorem 4.15.

♦ Theorem 4.15 Let G ∈ EX(32; 6). Then ex(32; 6) = 51.

Proof. We use the established upper and lower bounds given in Table 4.6, in particular, 51 ≤
ex(32; 6) ≤ 54. From Theorem 4.15 we know that ex(31; 6) = 49. Applying Inequality 4.5,

ex(32; 6)− ex(31; 6) = ex(32; 6)− 49 ≤ δ ≤ b(ex(32; 6)× 2)/32c.

The only possible values of ex(32; 6) that satisfy this inequality are 51 and 52.

Assume ex(32; 6) = 52. Then applying Lemma 4.3 (iii) and (vii), no two vertices of degree 4

are neighbours and there are no vertices of degree 3 adjacent only to vertices of degree 3. That

is, every vertex of degree 3 has at least one neighbour of degree 4. Figure 4.5 shows the tree

with height 3, root r, such that deg(r) = 4, all of the vertices in the neighbourhood of r have
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degree 3 and every vertex of degree 3 has at least one neighbour of degree 4. The vertices of

degree 4 are indicated by triangles in Figure 4.5. The tree has at least nine vertices of degree

4. However, by (ii) we know that G contains exactly eight vertices of degree 4.

Therefore, ex(32; 6) = 51.

A compilation of the current best known upper and lower bounds on ex(n; 6), for n ≤ 200 is

given in Appendix B Table B.3. These bounds are not very tight, for example the differences

between the upper and lower bound, for n = 100 and 200 are respectively, 36 and 114. These

results demonstrate how dependent the GAP algorithm is on good seed graphs.

4.6.3 ex(n; 7)

The current known upper and lower bounds on ex(n; 7) are contained in Table 4.8. Theorem 4.16

contains a construction by Abajo, Balbuena and Diánez [1] that uses a (q+ 1, 8)-cage, where q

is a prime power, to produce graphs that obtain good lower bounds on ex(n; 7).

Theorem 4.16 [1] Let f7(n) = ex(n; 7) and q ≥ 2 be a prime power and n0(q+1, 8) the order

of a (q+1,8)-cage. Then,

f7(n0(q + 1, 8) + q2 + q + 3) ≥ f7(n0(q + 1, 8)) + 2(q2 + q + 1) + 1.

n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 8 9

10 10 12 13 14 16 18 19 20 22 24

20 25 27 29 30 32 34 36 38 40 42

30 45 46 47 49 51 53 55 56-59 58-61 60-63

40 62-65 64-67 65-69 67-71 69-73 71-76 73-78 75-80 77-82 79-84

50 81-87 84-89 86-91 88-93 90-96 93-98 96-100 98-103 100-105 102-107

60 105-110 108-112 110-115 112-117 114-119 117-122 120-124 122-127 125-129 128-132

70 130-134 133-137 136-139 138-142 141-144 144-147 147-149 150-152 153-154 156-157

80 160

Table 4.8: Known upper and lower bounds on ex(n; 7), for n ≤ 19 by [2] and, for 20 ≤ n ≤ 80
by [3]. Exact values, when known, are listed in bold font.

The new lower bounds shown in Table 4.9 are generated from our GAP algorithm using the

(4,8) and (5,8)-cages as seed graphs. The (4,8) and (5,8)-cages are Moore cages and therefore

extremal, consequently, ex(80; 7) = 160 and ex(170; 7) = 425.
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A construction due to Gács and Héger, [65] gives the following bounds, for prime powers q:

n(q, 8) ≤ 2(q3 − 2q), for odd q

n(q, 8) ≤ 2(q3 − 3q − 2), for even q

n(q, 12) ≤ 2(q5 − q3)

When q = 4 this construction gives us the lower bound ex(100; 7) ≥ 200. This construction

has four more edges than the graph produced by our GAP algorithm using the Moore cages as

input. So we used this value to improve lower bounds ex(n; 7), for n close to 100.

n 0 1 2 3 4 5 6 7 8 9

80 161 162 164 166 168 170 172 174 176

90 178 180 181 183 185 187 189 191 193 196

100 200 201 202 204 206 209 212 215 218 221

110 224 227 230 233 236 239 242 245 248 252

120 256 258 261 264 267 270 273 276 278 281

130 284 287 290 293 296 299 302 306 309 312

140 316 319 322 325 328 332 335 338 342 345

150 348 352 356 360 363 367 371 374 378 382

160 385 389 393 396 400 404 408 412 416 420

170 425 426 427 429 431 433 435 436 438 440

180 442 444 446 448 450 452 453 455 457 459

190 461 463 465 467 469 471 473 475 477 479

200 481

Table 4.9: ♦ New lower bounds on ex(n; 7) produced by application of our GAP algorithm.

A compilation of the current best known upper and lower bounds on ex(n; 7), for n ≤ 200 is

given in Appendix B Table B.4. Note that the difference between the current best known upper

and lower bounds on ex(n; 7) is comparable to those of ex(n; 5), for example, exu(100; 5) −
exl(100; 5) = 14 compared to exu(100; 7) − exl(100; 7) = 13 and exu(200; 5) − exl(200; 5) =

46 compared to exu(200; 7) − exl(200; 7) = 33. Furthermore, when ex(n; 7) is known then

exu(n+ 1; 7)− exl(n+ 1; 7) ≤ 3 and exu(n− 1; 5)− exl(n− 1; 5) = 1.

4.7 ex(n; t), for t ∈ {8, 9, 10, 11}

To date most research in the area of extremal graphs has focused on finding ex(n; t) and graphs

in EX(n; t), for t ≤ 7. Little is known about ex(n; t) and the graphs in EX(n; t), for t ≥ 8,

with the exception of the Moore cages (see Section 3.1.2) and the work by Abajo and Diánez [2]

who established the extremal numbers, for t ≥ 4 and n ≤ b(16t− 15)/5c (see Section 4.5). The
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current known extremal numbers, for t = 8, 9, 10 and 11 due to Abajo and Diánez [2] are given

in Tables 4.10, 4.12, 4.14 and 4.16, respectively.

Considering the evidence that the reliability of a network is enhanced when the smallest cycle

in a graph is larger [98] prompted us to consider extremal graphs having larger values of t.

Taking into account the relationship between cages and extremal graphs, we decided to limit

our current investigation of extremal graphs to G ∈ EX(n; t), for t ≤ 11. In doing so, we use

the known cages and graphs that give the current best known upper bounds on n(k, g) (see

Table 3.1) as seed graphs for our GAP algorithm.

In this section we establish the previously unknown values of ex(n; 8), for n = 23, 24, 25, 26;

ex(n; 9), for n = 26, 27, 28, 29; and ex(127; 11). To do this we use the following lemma.

♦ Lemma 4.4 There exists a graph G ∈ EX(n; t) having minimum degree δ = 2 and maximum

degree ∆ ≥ 3 and size |E(G)| = ex(n; t) ∈ {ex(n− 1; t) + 1, ex(n− 1; t) + 2}, when

(i) 1 + 4∆ ≤ n < 46, for t = 8.

(ii) 2 + 4∆ ≤ n < 62, for t = 9.

(iii) 1 + 5∆ ≤ n < 94, for t = 10.

(iv) 2 + 5∆ ≤ n < 126, for t = 11.

Proof. From Theorem 4.3 there exists a graph with δ ≥ 2 and girth g = t + 1, for tn >

t + 1 + b(t− 2)/2c. Applying the Moore bound for irregular graphs given in Theorem 3.2, for

ex(n < 46; 8), ex(n < 62; 9), ex(n < 94; 10) and ex(n < 126; 11) determines upper and lower

bounds on the average degree δ < bdc < 3. Therefore, there exists a graph with minimum

degree δ = 2 and girth g = t + 1, in EX(n < 46; 8), EX(n < 62; 9), EX(n < 94; 10) and

EX(n < 126; 11). Application of Theorem 4.1 gives the lower bounds on n in terms of the

maximum degree, ∆. Furthermore, we establish ex(n−1; t)+1 ≤ ex(n; t) ≤ ex(n−1; t)+δ(G),

for the given values of n and t by application of the Inequalities 4.2 and 4.4.

4.7.1 ex(n; 8)

In Table 4.10 we provide a summary of the current known values of ex(n; 8). We make use of

these values to determine the exact values of the extremal numbers ex(23; 8), ex(24; 8), ex(25; 8)

and ex(26; 8). We then run our GAP algorithm to generate new lower bounds on ex(n; 8), for

n ≤ 200, given in Table 4.11.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 9

10 10 11 12 14 15 16 18 19 21 22

20 23 25 27

Table 4.10: Known values of ex(n; 8), for n ≤ 22, from [2].

♦ Theorem 4.17 Let G ∈ EX(23; 8). Then ex(23; 8) = 28.

Proof. We know that ex(22; 8) = 27 (see Table 4.10). By Lemma 4.4 we have ex(23; 8) ∈
{28, 29} and there exists a graph G ∈ EX(23; 8) having δ = 2, ∆ ≥ 3 and 1 + 4∆ ≤ n = 23.

Therefore, ∆ ≤ 5.

Assume ex(23, 8) = 29. From Table 4.10 we know ex(21, 8) = 25. Consequently, ex(23; 8) −
ex(21, 8) = 29 − 25 = 4, thus, removing two vertices from G must remove at least 4 edges of

G. Therefore, P2 = v1v2 such that deg(v1) = deg(v2) = 2 is a forbidden subgraph of G and

T∆,2,8(P 2
2 ) is a subgraph of G. Counting the vertices in T∆,2,8(P 2

2 ) (see Figure 4.6) we obtain

|V (G)| = 23 ≥ |V (T∆,2,8(P 2
2 ))| = 1 + ∆ + ∆ + 2∆ + 2∆ = 1 + 6∆.

Therefore, ∆ = 3.

number of
vertices

1

∆

r 0

1

2

distance
from r

∆
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3

∆
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2∆

Figure 4.6: |V (T∆,2,8(P 2
2 ))| = 1 + 6∆.

Let x be the number of vertices in G having degree 2, and y be the number of vertices of degree

3. Then x + y = 23 and 2x + 3y = 29 × 2 = 58. Solving these equations, we determine that

there are twelve vertices of degree 3 and eleven vertices of degree 2 in G. Therefore, the degree

sequence is D= (312, 211).
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Figure 4.7: T3,2,8(P 2
2 ) having P 3

3 as a subgraph.

A vertex of degree 3 inG can have at most one neighbour having degree 3, otherwise V |T3,2,8(P 2
2 )| ≥

25 (see Figure 4.7). Therefore, the twelve vertices of degree 3 require twenty-four neighbours

of degree 2. However, the eleven vertices of degree 2 have at most 22 neighbours of degree 3.

Therefore, by pigeonhole principle, there is at least one vertex of degree 3 with more than one

neighbour of degree 3. This is a contradiction. Therefore, ex(23; 8) = 28.

In Theorem 4.18, we use the results of Theorem 4.17 to determine the value of ex(24; 8).

♦ Theorem 4.18 Let G ∈ EX(24; 8). Then ex(24; 8) = 29.

Proof. We know that ex(23; 8) = 28 from Theorem 4.17. By Lemma 4.4 we have ex(24; 8) ∈
{29, 30} and there exists a graph G ∈ EX(24; 8) having δ = 2, ∆ ≥ 3 and 1 + 4∆ ≤ n = 24.

Therefore, ∆ ≤ 5.

Assume ex(24; 8) = 30. From Table 4.10, ex(21;8)=25. Consequently, ex(24; 8) − ex(21; 8) =

30− 25 = 5, thus, removing three vertices from G must cause the removal of at least five edges

from G and P 2
3 is a forbidden subgraph.

From Table 4.10, ex(20;8)=23. Therefore, ex(24; 8) − ex(20; 8) = 30 − 23 = 7. Consequently,

removing four vertices from G must result in the removal of at least seven edges from G.

Therefore, G contains at most one path, P 2
2 , of length 2 such that all vertices in the path have

degree 2 and 2P 2
2 is a forbidden subgraph of G.
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Let F= {2P 2
2 , P

2
3 } represent these forbidden subgraphs. Then the minimal tree T∆,2,8(F) has

order 6∆ ≤ |V (G)| = 24. Therefore, ∆ ≤ 4.

Assume ∆ = 4. Then |V (T∆,2,8(F))| = 24 = |V (G)| as shown in Figure 4.8. Therefore,

T4,2,8(F) is a spanning tree of G.
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Figure 4.8: |V (T4,2,8( F ))| = 24.

By our assumption, |E(G)| = 30. Therefore, |E(G)−E(T4,2,8(F))| = 30−23 = 7. Consequently,

there are 7 edges between the leaves of T4,2,8(F). Furthermore, in order to comply with the

forbidden subgraphs constraints, the eight leaves of T4,2,8(F) must have degrees (2,2,3,3,3,3,3,3)

in G as indicated by the edges in the tree and dashed lines shown in Figure 4.8. Assume that

these seven edges can be added between the eight leaves of T4,2,8(F) without forming a short

cycle. Then there is a cycle, C9, of length 9 that includes the eight leaves of T4,2,8(F) and the

vertex x (see Figure 4.8). Consider any two vertices that are in the same branch of the tree

T4,2,8(F), for example, y1 and y2 as shown in Figure 4.8. The distance between y1 and y2 via

T4,2,8(F) is 4 and the distance between y1 and y2 via C9 is at most 4. Therefore, a forbidden

cycle of length at most 8 exists through the vertices y1 and y2. Consequently, ∆ = 3.

Let x be the number of degree 3 vertices in G and y the number of vertices of degree 2. Then

x + y = 24 and 3x + 2y = 30 × 2. Solving these equations determines that there are twelve

vertices of degree 3 and twelve vertices of degree 2. Therefore, the degree sequence of G is

D= (312, 212).

The tree T3,2,8(F), with the additional constraint that r has three neighbours of degree 4,

illustrated in Figure 4.9, has 27 vertices. Therefore, any vertex v ∈ G with deg(v) = 3 has at

most two neighbours of degree 3.
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Figure 4.9: |V (T3,2,8( F ))| = 27.

We now resolve the structure of the graph and the lengths of the cycles on which the ver-

tices of degree 3 lie. Recall, D= (312, 212). Let xi be the vertices of degree 2 and yi the

vertices of degree 3, where i = 1, 2, . . . , 12. Since 2P 2
2 ∈F any path P4 must contain at

least two vertices of degree 3. Assume that G contains one path P 2
2 = {x12, x1}. Then all

other vertices of degree 2 in G have two neighbours of degree 3 and G is composed of ei-

ther a cycle C23 = x1, y1, x2, y2, . . . , x11, y11, x12, x1 and the vertex y12 or the cycles C11 =

x12, x1, y1, x2, y2, . . . , x5, y5, x12 and C12 = x6, y6, x7, y7, . . . , x11, y11 and the vertex y12. In

either cases the vertex y12 must have three neighbours of degree 3, which is a contradiction.

Therefore, G contains either one cycle C24 = x1, y1, x2, y2, . . . , x12, y12, x1 or two cycles C12 =

x1, y1, x2, y2, . . . , x6, y6, x1 and C12 = x7, y7, x8, y8, . . . , x12, y12, x7. Both scenarios have 24

vertices and 24 edges. We have to add another six edges between the vertices yi, for i =

1, 2 . . . , 12. We can not add six edges into C24 without creating a forbidden cycle. No edges can

be placed into a C12 without creating forbidden cycles and it is not possible to place six edges

between the two cycles of length 12 without constructing cycles of length less than nine. This

can be demonstrated as follows. Without loss of generality add the edge y1y7 between the two

C12 cycles, then the only vertex that can be adjacent to y2 without creating forbidden cycles

is y10. Then y6 must be adjacent to one of the vertices in the set {y8, y9, y11, y12}. Creating

forbidden cycles.

Therefore, ex(24; 8) = 29.



67 4. Extremal Graphs

The construction in the proof of the following theorem was obtained using Exoo’s [53] ran-

domised hill-climbing back-tracking algorithm. We used this algorithm after a number of failed

attempts to prove that ex(25; 8) = 30.

♦ Theorem 4.19 Let G ∈ EX(25; 8). Then ex(25; 8) = 31.

Proof. We know that ex(24; 8) = 29 by Theorem 4.18. From Lemma 4.4 ex(25; 8) ∈ {30, 31}
and there exists a graph G with minimum degree δ = 2, maximum degree ∆ ≥ 3 and 1+4∆ ≤ n.

We have constructed a graph of order G, size 31, girth 9, degree sequence D = (312, 213) and

edge set, E(G) = {{1, 6}, {1, 22}, {2, 14}, {2, 20}, {3, 5}, {3, 14}, {3, 24}, {4, 6}, {4, 11}, {4, 19},
{5, 19}, {6, 23}, {7, 13}, {7, 15}, {7, 16}, {8, 15}, {8, 22}, {8, 24}, {9, 11}, {9, 12}, {9, 21},
{10, 12}, {10, 14}, {10, 18}, {13, 20}, {15, 21}, {16, 17}, {16, 25}, {17, 19}, {18, 25}, {20, 23}}.

Therefore, ex(25; 8) = 31.

The construction in the proof of the following theorem was obtained using our GAP algorithm

with the graph given in the proof of Theorem 4.19 as a seed graph.

♦ Theorem 4.20 Let G ∈ EX(26; 8). Then ex(26; 8) = 33.

Proof. We know that ex(25; 8) = 31 from the construction in Theorem 4.19. From Lemma

4.4 we know ex(26; 8) ∈ {32, 33}, and there exists a graph G with minimum degree δ = 2,

maximum degree ∆ ≥ 3 and 1 + 4∆ ≤ n.

Adding one vertex {26} and two edges {{1, 26}, {18, 26}} to the graph constructed in the proof

of Theorem 4.19 results in a graph of order 26, size 33 and girth 9.

Therefore, ex(26; 8) = 33.

We ran our GAP algorithm using the construction from Theorem 4.20 and the (3,9)-cage as

input graphs. The new lower bounds on ex(n; 8) that were obtained form running our GAP

algorithm are given in Table 4.11

4.7.2 ex(n; 9)

In Table 4.12 we provide a summary of the current known values of ex(n; 9). We make use of

these values to determine the exact values of the extremal numbers ex(26; 9), ex(27; 9), ex(28; 9)
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n 0 1 2 3 4 5 6 7 8 9

20 28 29 31 33 34 35 37

30 39 40 42 43 45 47 48 50 52 54

40 55 57 58 60 62 64 65 67 69 71

50 73 75 77 78 80 81 83 85 87 88

60 90 91 93 95 97 99 100 102 103 105

70 107 108 110 112 114 115 117 118 120 122

80 124 125 127 129 131 133 134 136 138 140

90 141 143 145 147 149 151 153 155 157 159

100 161 163 164 166 168 170 172 173 175 177

110 179 181 183 185 187 188 190 192 194 196

120 198 200 202 204 206 208 210 212 213 215

130 217 219 221 223 225 227 229 231 233 235

140 237 239 241 243 245 247 249 251 253 255

150 257 259 261 263 265 267 269 272 274 275

160 277 279 281 283 285 287 289 291 293 295

170 297 299 301 303 305 307 309 311 313 315

180 317 319 321 323 325 327 329 331 333 335

190 337 339 341 343 345 347 349 351 353 355

200 357

Table 4.11: ♦ New lower bounds on ex(n; 8), for n ≤ 200, produced by application of our GAP
algorithm.

and ex(29; 9). We then run our GAP algorithm to generate new lower bounds on ex(n; 9), for

n ≤ 200, as shown in Table 4.13.

n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8

10 10 11 12 13 15 16 17 18 20 21

20 23 24 25 27 28 30

Table 4.12: Known values of ex(n; 9), for n ≤ 25, from [2].

In the following theorem we determine the extremal number, for the smallest value of n that is

not yet known, namely, ex(26; 9).
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♦ Theorem 4.21 Let G ∈ EX(26; 9). Then ex(26; 9) = 31.

Proof. We know that ex(25; 9) = 30 (see Table 4.12). By Lemma 4.4 we have ex(26; 9) ∈
{31, 32} and there exists a graph G ∈ EX(26; 9) having δ = 2, ∆ ≥ 3 and 2 + 4∆ ≤ n = 26.

Therefore, ∆ ≤ 6.

Assume ex(26; 9) = 32. Then, since ex(24; 9) = 28 (see Table 4.12), removing two vertices

must remove at least four edges. Therefore, the path P 2
2 is a forbidden subgraph of G and

|V (T∆,2,9(P 2
2 ))| = 6∆ + 5 ≤ |V (G)| = 26 as illustrated in Figure 4.10. Therefore, ∆ = 3.

Let x be the number of vertices of degree 3 in G and y the number of vertices of degree 2. Then

x+ y = 26 and 3x+ 2y = 32× 2 = 64. Solving these equations we resolve the degree sequence

of G to be D = (312, 214).

number of
vertices

2

∆

0

1

2

distance
from e

∆ e

∆ + 1

2∆3

2∆ + 24

Figure 4.10: |V (T∆,2,9(P 2
2 ))| = 6∆ + 5.

Next we prove that every neighbour of a vertex v such that deg(v) = 3 must have degree 2.

Let e = r1r2 be an edge such that deg(r1) = deg(r2) = 3. Then |V (T3,2,9(P 2
2 ))| = 26, as shown

in Figure 4.11. Note that if a neighbour of r1 has degree 3 then the minimal tree with these

extra constraints contains at least 27 vertices. Therefore, a vertex of degree 3 has at most one

neighbour of degree 3. Since P 2
2 is a forbidden subgraph of G, the leaves of the tree T3,2,9(P 2

2 )

must have degree 3 in G and there are 8 edges between the leaves of T3,2,9(P 2
2 ), thus creating

a forbidden cycle of length at most 8. Therefore, every neighbour of a vertex of degree 3 must

have degree 2. Since there are twelve vertices of degree 3, we require 12× 3 = 36 edges xy such

that deg(x) = 3 and deg(y) = 2. However, there are only fourteen vertices of degree 2 providing

14× 2 = 28 available edges.

Therefore, ex(26; 9) = 31.
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Figure 4.11: |V (T3,2,9(P 2
2 ))| = 26.

♦ Theorem 4.22 Let G ∈ EX(27; 9). Then ex(27; 9) = 32.

Proof. From Theorem 4.21 we know ex(26; 9) = 31. By Lemma 4.4 we have ex(27; 9) ∈
{32, 33} and there exists a graph G ∈ EX(27; 9) having δ = 2, ∆ ≥ 3 and 2 + 4∆ ≤ n = 27.

Therefore, ∆ ≤ 6.

Assume ex(27; 9) = 33. From Table 4.12 we know ex(24; 9) = 28. Consequently, remov-

ing 3 vertices from G must remove at least 5 edges and P 2
3 , is a forbidden subgraph. Then

|V (T∆,2,9(P 2
3 ))| = 3 + 5∆ < |V (G)| = 27 (see Figure 4.12). Therefore, ∆ ≤ 4.

Assume ∆ = 4. Then |V (X)| = |V (G)−V (T4,2,9(P 2
3 )))| = 27−23 = 4. Let X = {x1, x2, x3, x4}.

Assume that there are two vertices r1 and r2 of degree 4 that are neighbours. Then the minimal

tree T4,2,9(P 2
3 ) with this additional constraint has order |V (T4,2,9(P 2

3 ))| = 2+6+6+6+12 = 32.

Therefore, no two vertices of degree 4 are neighbours.

Assume that a vertex r1 of degree 4 is adjacent to a vertex r2 of degree 3. Then the minimal

tree T4,2,9(P 2
3 ) with this additional constraint has order |V (T4,2,9(P 2

3 ))| = 2+5+5+5+10 = 27.

Therefore, T4,2,9(P 2
3 ) is a spanning tree of G. There are 26 edges in T4,2,9(P 2

3 ). There must

be 33-26=7 edges between the leaves of the tree. Assume that we can place the required seven

edges between the leaves of the tree. Then consider the ten leaves and their five parent vertices

as a subgraph of G. These fifteen vertices must have 17 edges between them. However, from

Table 4.12 we known that ex(15; 9) = 16. Therefore, all neighbours of a vertex of degree 4

have degree 2. We constructed all possible graphs, considering these constraints and found that
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Figure 4.12: |V (T∆,2,9(P 2
3 ))| = 3 + 5∆.

there can be at most 32 edges in G. Two of the graphs with 32 edges had degree sequences D
= (41, 38, 218) and D = (43, 34, 220).

Therefore, ∆ = 3. Let x denote the number of vertices of degree 3 in G and y the number of

vertices of degree 2. Then x + y = 27 and 3x + 2y = 33 × 2 = 66. Solving these equations

resolves the degree sequence of G to be D = (312, 215).

The fact that P 2
3 is a forbidden subgraph means that every vertex of degree 2 has at least

one neighbour or degree 3. Let xi, for i = 1, 2, . . . , 15 denote the vertices of degree 2 and yj ,

for j = 1, 2, . . . , 12 denote the vertices of degree 3. Let xiyj , for i = j = 1, 2, . . . , 12 denote

these edges. Then there is a cycle of length 15 through the twelve vertices of degree 3 and three

vertices of degree 2, namely, x13, x14 and x15. The other twelve vertices of degree 2 are pendant

vertices to the twelve vertices of degree 3 as shown in Figure 4.13. Although the placement of

the vertices x13, x14 and x15 on the cycle is somewhat arbitrary, each of the vertices x13, x14

and x15 have two neighbours of degree 3 on the cycle. The graph in Figure 4.13 has 27 vertices

and 27 edges. It is impossible to add another six edges between the pendant vertices xi, for

i = 1, 2, . . . , 12.

Therefore, ex(27; 9) = 32. Four graphs that reach this value have degree sequences D =

(311, 215, 11), D = (310, 217), D = (41, 38, 218) and D = (43, 34, 220).

In the following two theorems we establish the values of ex(28; 9) and ex(29; 9). The construc-

tions described in the proofs of these theorems were obtained by our GAP algorithm using the

subdivided Petersen graph s1P ∈ EX(25; 9) as input.
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Figure 4.13: The structure of a graph with D = (312, 215), when P 2
3 is a forbidden subgraph.

♦ Theorem 4.23 Let G ∈ EX(28; 9). Then ex(28; 9) = 34.

Proof. From Theorem 4.22 we know ex(27; 9) = 32. By Lemma 4.4 we have ex(28; 9) ∈
{33, 34}. Recall from Theorem 4.7 the subdivided Petersen graph is extremal, that is, s1P ∈
EX(25; 9) and ex(25; 9) = 30. The diameter of s1P is 6.

Given s1P ∈ EX(25; 9) and three vertices {x1, x2, x3}, such that xi /∈ s1P , for i = 1, 2, 3,

we can create a new graph G with V (G) = V (s1P ) ∪ {x1, x2, x3} and E(G) = E(s1P ) ∪
{ux1, x1x2, x2x3, x3v}, where u and v are vertices in s1P , such that d(u, v) = 6. G has order

28, size 34 and girth 10.

Therefore, ex(28; 9) = 34.

♦ Theorem 4.24 Let G ∈ EX(29; 9). Then ex(29; 9) = 36.

Proof. From Theorem 4.23 we know ex(28; 9) = 34. By Lemma 4.4 we have ex(28; 9) ∈
{35, 36}. The construction of the graph G ∈ EX(28, 9) described in the proof of Theorem 4.23

has diameter 8. Therefore, given G and a vertex x /∈ V (G) we can create a new graph G′ with
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V (G′) = V (G) ∪ {x} and E(G′) = E(G) ∪ {ux, xv}, where u and v be vertices in G, such that

d(u, v) = 8. The new graph G′ has order 29, size 36 and girth 10.

Therefore, ex(29; 9) = 36.

We used the constructions in the proofs of Theorems 4.22 and 4.23 and the (3,10)-cage as seed

graphs to our GAP algorithm. The (3,10)-cage has order 70 and gives the lower bound on

exl(70; 9) = 105.

n 0 1 2 3 4 5 6 7 8 9

20 31 32 34 36

30 37 38 40 42 43 44 46 48 49 50

40 52 54 55 57 59 60 61 63 64 66

50 68 70 71 72 74 76 78 79 81 83

60 85 86 88 90 92 94 96 98 100 102

70 105 106 107 109 110 112 114 115 116 118

80 120 121 123 124 126 128 129 131 133 134

90 136 138 139 141 143 144 146 148 149 151

100 152 154 156 158 159 161 163 165 167 168

110 170 172 174 176 178 179 181 183 185 186

120 188 189 191 193 195 196 198 200 202 203

130 205 207 208 210 212 214 216 218 220 222

140 224 226 228 230 232 234 235 237 239 241

150 243 246 247 248 249 250 252 254 256 258

160 259 261 263 265 267 269 271 273 275 277

170 279 281 283 285 287 289 291 293 295 297

180 299 301 303 305 307 308 310 312 314 316

190 318 320 322 324 326 328 330 332 334 336

200 338

Table 4.13: ♦ New lower bounds on ex(n; 9), for n ≤ 200, produced by application of our GAP
algorithm.

4.7.3 ex(n; 10)

We use the (3,11)-cage as a seed graph to our GAP algorithm. The (3,11)-cage is has order

112 and size 168. Applying the lower bound on ex(112; 10) due to the (3,11)-cage and the

upper bound on ex(112; 10) due to the Moore bound for irregular graphs, we know, 168 ≤
ex(112; 10) ≤ 173. The new current best lower bounds on ex(n; 10) produced by our GAP

algorithm are displayed in Table 4.15.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8

10 9 11 12 13 14 15 17 18 19 20

20 22 23 24 26 27 28 30 31 33 34

Table 4.14: Known values of ex(n; 10), for n ≤ 29, from [2].

Abajo, Balbuena and Diánez [1] constructed some infinite families to provide better lower

bounds on ex(n; 10) as shown in Theorem 4.25. In particular, ex(112; 10) > 168, ex(116; 10) >

174, ex(120; 10) > 180, and ex(122; 10) > 183. We obtained the same lower bounds obtained

using our GAP algorithm, for n = 112, 116, 120 and 122. These values are displayed in italic

font in Table 4.15.

Theorem 4.25 [1] Let f10(n) = ex(n; 10) and q ≥ 3 be a prime power. Then

(i) f10(2q5 + 2q4 + 2q3 + 2q2 + q) ≥ q2(q + 1)2(q2 + 1) + (q + 1)f10(q).

(ii) f10(2(q5 + q4 + q3 + q2)) ≥ q3(q3 + 2q2 + 2q + 2) + 2qf10(q)..

(iii) f10(2q5 + 2q4 + 2q3 + q2) ≥ q3(q + 1)(q2 + q + 1) + q(q + 1)f10(q).

(iv) f10(2(q5 + q4 + q3)) ≥ q6 + 2q5 + 2q4 + 2q2f10(q).

(v) f10(2(q5 + q4 + q3)− h) ≥ q6 + 2q5 + 2q4 + 2q2f10(q)− h(q + 1), for all h = 1, . . . , q5.

4.7.4 ex(n; 11)

Finally, for t = 11, we ran our GAP program with seed graphs being: the subdivided Heawood

graph s1H; the subdivided complete bipartite graph s2K5,5; and the (3, 12)-cage, otherwise

known as the Benson graph. The fact that s1H is extremal and ex(35, 11) = 42, was established

in Section 4.5. The graph s2K5,5 gives the lower bound ex(60; 11) ≥ 75. The Benson graph,

having 126 vertices and 189 edges, is the (3, 12)-Moore cage and is therefore extremal and

ex(126; 11) = 189.

In the following theorem we use the fact that the Benson graph is extremal and apply the upper

bound on the extremal number due to the Moore bound for irregular graphs, to establish the

previously unknown extremal number ex(127; 11) = 190.

♦ Theorem 4.26 ex(127; 11) = 190 and there exists a graph G ∈ EX(127; 11) with minimum

degree 1.

Proof. We know that ex(126; 11) = 189 due to the (3,12)-cage being the Moore cage on 126

vertices. We can add one vertex and one edge to the (3,12)-cage, without reducing the girth, by

either adding a pendant vertex or by subdividing an arbitrary edge. Therefore, by construction,
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n 0 1 2 3 4 5 6 7 8 9

30 35 36 38 39 41 42 43 44 46 47

40 49 50 52 53 54 56 57 59 60 62

50 63 65 66 67 69 71 72 73 75 76

60 78 79 81 82 84 86 87 88 90 91

70 93 94 96 97 99 100 102 103 105 107

80 108 110 111 113 114 116 117 119 121 123

90 125 127 129 130 132 134 136 138 140 142

100 144 146 147 149 151 153 155 157 159 161

110 163 165 168 169 171 172 174 175 177 178

120 180 181 183 184 186 188 189 190 192 193

130 195 196 198 199 201 202 204 205 207 208

140 210 211 213 214 216 217 219 220 222 223

150 225 226 228 229 231 232 234 236 238 239

160 240 242 244 245 247 248 250 251 253 255

170 256 258 259 261 262 264 266 267 269 270

180 272 273 275 276 278 279 281 282 284 285

190 287 289 291 292 294 295 297 298 300 302

200 303

Table 4.15: ♦ New lower bounds on ex(n; 10), for n ≤ 200, produced by application of our
GAP algorithm.

ex(127; 11) ≥ ex(126; 11) + 1 = 190 and there exists G such that D(G) = (3126, 21) and G′ such

that D(G′) = (41, 3125, 11).

Assume ex(127; 11) = 191 and G ∈ EX(127; 11). Then the average degree is d = (191×2)/127.

Applying the Moore bound for irregular graphs with average degree d = (191 × 2)/127 and

girth g = 12 determines that G has at least 128 vertices which is a contradiction. Therefore,

ex(127; 11) = 190.

Some of the current best known lower bounds on ex(n; 11) are the trivalent symmetric graphs

found by Condor and Dobcsányi [40], namely, for n = 162, 168, 182, 192, 204 and 216. These

graphs have diameter 8, for n = 162, 168, 192, 216 and diameter 9, for n = 182 and 204. Using

the knowledge of the diameter of these graphs we manually calculate the lower bounds on

ex(n; 11), for some other values of n close to these values.
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Theorem 4.27 [1] Let q be an odd prime power different from 5 and 7 and let n0(q + 1, 12)

denote the order of a minimal (q + 1, 12)-cage. Then,

f11(n0(q + 1, 12) + 2q3 + 2q + 5) ≥ f11(n0(q + 1, 12)) + 3q3 + 3q + 5.

n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8

10 9 10 12 13 14 15 16 18 19 20

20 21 22 24 25 27 28 29 30 32 33

30 34 36 37

Table 4.16: Known values of ex(n; 11), for n ≤ 32, from [2].

n 0 1 2 3 4 5 6 7 8 9

30 38 40 42 43 44 45 46

40 48 49 50 52 53 54 56 57 58 60

50 61 62 64 66 67 68 70 71 72 74

60 75 80 81 82 84 85 87 88 89 91

70 92 94 95 97 98 100 101 103 104 106

80 107 109 110 112 113 115 116 118 119 121

90 122 124 125 127 128 130 132 133 135 136

100 138 139 141 143 145 147 149 151 153 155

110 157 159 161 163 165 166 168 170 172 174

120 176 178 180 182 184 186 189 190 191 192

130 193 195 196 198 199 200 202 203 205 206

140 207 209 210 212 213 214 216 217 219 220

150 221 223 224 226 227 229 230 232 234 236

160 238 240 243 244 245 247 248 249 252 253

170 254 256 257 258 259 260 261 262 264 266

180 268 270 273 274 276 277 278 279 280 281

190 283 285 288 289 290 292 293 294 295 296

200 298 300 302 303 306 307 309 310 311 312

Table 4.17: ♦ New lower bounds on ex(n; 11), for n ≤ 209, produced by application of our
GAP algorithm.

Compilations of the current best known upper and lower bounds on ex(n; t), for n ≤ 200 and

t = 8, 9, 10 and 11 are given in Appendix B Tables B.5, B.6, B.7 and B.8.

In Table 4.18 we compare the differences between exu(n; t) and exl(n; t), for n = 50, 100, 150

and 200 and 4 ≤ t ≤ 11.
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t 4 5 6 7 8 9 10 11

exu(50; t)− exl(50; t) 0 35 7 6 3 3 4 3

exu(100; t)− exl(100; t) 54 14 36 13 18 13 7 6

exu(150; t)− exl(150; t) 117 19 48 13 38 28 19 10

exu(200; t)− exl(200; t) 226 46 114 43 63 46 39 25

Table 4.18: The difference between exu(n; t) and exl(n; t), for n = 50, 100, 150 and 200 and
4 ≤ t ≤ 11.
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Connectivity

In this chapter, we present our results on the connectivity, more precisely, vertex connectivity,

of a graph. Recalling from Section 2.5, we say that G is r-connected if the deletion of at least r

vertices of G is required to disconnect the graph. Furthermore, the vertex connectivity, denoted

by κ, of a connected graph G is the smallest number of vertices whose removal disconnects G.

More formally,

κ = min{|X| : X ⊆ V (G) and ω(G−X) > 1},

where ω(G−X) is the number of components of the graph obtained from G by removing the

vertices of X.

Our first theorem, presented in Section 5.1, is an extension of a Theorem by Balbuena and

Marcote [18], which was given in Section 3.3, namely, any r-regular graph G with r ≥ 2 and

girth g has vertex connectivity,

κ ≥ 2 if

{
D ≤ 2b(g − 1)/2c+ 2, for r ≤ 3

D ≤ 2b(g − 1)/2c+ 1, for r > 3

We extend this result to include non regular graphs, by showing that a non regular graph G

with minimum degree δ ≥ 2 and diameter D ≤ g − 1 is 2-connected if the girth is even or

∆ ≤ 2δ − 1, when the girth is odd.

Moreover, in Section 5.2, we improve upon a result by Balbuena, Carmona, Fàbrega and Fiol

[11], which was stated in Section 3.3, that is, a graph G with minimum degree δ ≥ 2, girth g,

78
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edge minimum degree ξ has vertex connectivity,

κ ≥ min{δ, 4} if D ≤ g − 2, g odd .

We improve upon this result by proving that any graph G having even girth and ∆ ≤ 2δ− 5 is

5-connected.

5.1 Sufficient Conditions for κ ≥ 2

In Theorem 5.1, we show that a graph with even girth g, D ≤ g − 1 and minimum degree

δ ≥ 2 has vertex connectivity κ ≥ 2. The fact that this is not true for graphs with odd girth is

demonstrated by the graph obtained by “joining” two Petersen graphs in such a manner that

they “share” one vertex, as shown in Figure 5.1, the resulting graph has minimum degree δ = 3,

diameter D = 4, girth g = 5 and vertex connectivity κ = 1.

Figure 5.1: A graph with δ ≥ 2, ∆ > 2δ − 1, D ≤ g − 1 and κ = 1.

Nonetheless we improve upon above mentioned known results for graphs with odd girth by

showing that κ ≥ 2, for any graph G with odd girth g, diameter at most D ≤ g − 1, and

maximum degree ∆ ≤ 2δ − 1. The fact that these bounds on the maximum and minimum

degree are necessary is demonstrated by the graph in Figure 5.1 having ∆ = 6 > 2δ − 1 = 5

and κ = 1.

In what follows the notation [X,C] denotes the edges between two sets of vertices X and C,

where X,C ⊂ V (G) and [x,C] the set of edges between a vertex x and the set of vertices C.

♦ Theorem 5.1 Let G be a graph with minimum degree δ ≥ 2, maximum degree ∆, girth g

and diameter D ≤ g − 1. Then,

(i) κ ≥ 2, for g even.

(ii) κ ≥ 2, for g odd and ∆ ≤ 2δ − 1.
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Proof.

(i) Assume that κ = 1 and {x} is a vertex cut set of G. Let C and C ′ be two components

of G − x. Since g is even there exists a vertex u ∈ V (C) such that d(u, x) ≥ g/2, for every

component C of G−x otherwise G contains a cycle of length g−1. Select two vertices u ∈ V (C)

and u′ ∈ V (C ′) such that d(u, x) ≥ g/2 and d(u′, x) ≥ g/2. This principle is demonstrated in

Figure 5.2 by a graph with girth g = 6 and diameter D ≥ d(u, x) + d(u, v′) ≥ g, contradicting

the assumption that D ≤ g − 1. Therefore, κ ≥ 2.

C ′C X

x
u′u

Figure 5.2: Illustration of proof of Theorem 5.1 (i) for a graph with girth 6. D ≥ d(u, x) +
d(u′, x) ≥ g/2 + g/2 = g.

(ii) Assume that κ = 1 and {x} is a vertex cut set of G. Since g is odd and D ≤ g − 1 we

can apply Theorem 3.5 to establish that edge connectivity λ = δ. Then for each component C

of G − x the number of edges with one vertex being x and the other vertex in the component

C is at least δ. Furthermore, λ = δ ≤ |[x,C]| = |N(x) ∩ V (C)|. Since G − x has at least

two components, say C and C ′ then 2δ ≤ |N(x) ∩ V (C)| + |N(x) ∩ V (C ′)| ≤ |N(x)| ≤ ∆, as

demonstrated in Figure 5.3 which contradicts the assumption ∆ ≤ 2δ − 1, hence κ ≥ 2.

5.2 Sufficient Conditions for κ ≥ 5

In Theorem 5.2 we improve on the aforementioned result of Balbuena, Carmona, Fàbrega and

Fiol [11] by establishing conditions on the maximum and minimum degree that ensure κ ≥ 5 for

any graph with even girth, diameter D ≤ g − 2 and δ ≥ 5. To do this we require the following

two lemmas.

Lemma 5.1 [12,58,62,80,117] Let G be a graph with girth g, and minimum degree δ. Assume

that X is a cut set with cardinality |X| ≤ δ−1. Then, for any connected component C in G−X,

there exists some vertex u ∈ V (C) such that d(u,X) ≥ b(g − 1)/2c.



81 5. Connectivity

Nµ(X)

X

N(X)

C C ′

u′

Nµ′(X)

v′δ+i

v′1

v′2

v′δx

N(X)

[x,C ′]
[x,C]

v1

v2

vδ
u

v′δ+j

Figure 5.3: Illustration of proof of Theorem 5.1 (ii). 2δ ≤ |N(x) ∩ V (C)|+ |N(x) ∩ V (C ′)| =
δ + i+ δ + j ≤ |N(x)| ≤ ∆.

Our new Lemma 5.2 is a generalisation of Lemma 2 [18], including non regular graphs with

minimum degree δ ≥ 2. We consider a graph G with cut set X and a component C of G−X,

where the maximum distance from any vertex u in C is µ = b(g−1)/2c. We find any vertex u at

the maximum distance from X in the component C, has at least d(u)−|Nµ(u)∩X| neighbours

in the component C that are also at the maximum distance from X, more formally,

♦ Lemma 5.2 Let G be a graph with girth g and minimum degree δ ≥ 2. Assume that X is

a cut set of G and let C be a component of G − X with µ = max{d(u,X) : u ∈ V (C)} =

b(g − 1)/2c. Then, for all u ∈ Nµ(X) ∩ V (C),

|N(u) ∩Nµ(X) ∩ V (C)| ≥ d(u)− |Nµ(u) ∩X|.

Proof. Assume µ = 1. Then, since µ is the maximum distance of any vertex u ∈ C from

the cut set X there are no vertices at distance µ + 1 from X. Therefore all vertices in C are

neighbours of X, that is, V (C) ⊂ N(X). Furthermore, all neighbours of u are either in X or

at distance µ = 1 from X. Therefore, |N(u) ∩ N(X) ∩ V (C)| = d(u) − |N(u) ∩ X|, for all

u ∈ N(X) ∩ V (C).

Assume µ ≥ 2. Then N(u) = (Nµ(X)∪Nµ−1(X))∩V (C), for all u ∈ Nµ(X)∩V (C) and d(u) =

|N(u)| = |N(u)∩Nµ(X)|+|N(u)∩Nµ−1(X)|. Assume |N(u)∩Nµ(X)| < d(u)−|Nµ(u)∩X|, then

|N(u) ∩Nµ−1(X)| > |Nµ(u) ∩X|. In this case, by pigeonhole principle, there are two different

vertices z1, z2 ∈ Nµ−1(X) ∩N(u) and a vertex x ∈ Nµ(v) ∩X, such that d(z1, X) = d(z1, x) =

µ − 1 and d(z2, X) = d(z2, x) = µ − 1. Since d(u,X) = µ(C) = µ, then neither the shortest
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(z1, x)-path nor the shortest (z2, x)-path contain u. These two paths together with the path of

length two z1, u, z2, define a cycle whose length is d(z1, x)+d(z2, x)+2 = 2µ = 2b(g−1)/2c < g,

which is a contradiction. Therefore |N(u) ∩Nµ(X)| ≥ d(u)− |Nµ(u) ∩X|.

C

z1

N(X) Nµ(X)Nµ−1(X)

u

z2

X

x

Nµ(u)

Figure 5.4: Illustration of proof of Lemma 5.2.

We now apply Lemmas 5.1 and 5.2 to prove Theorem 5.2.

♦ Theorem 5.2 Let G be a graph with even girth g, minimum degree δ, maximum degree

∆ ≤ 2δ − 5, and diameter D ≤ g − 2. Then κ ≥ 5.

Proof. Observe that the condition δ ≤ ∆ ≤ 2δ − 5 ensures δ ≥ 5. Assume κ < 5. Then

by Theorem 3.6(v), we know κ ≥ 4, hence we only need to consider the possibility of κ = 4.

Let X ⊂ V (G) be a minimum cut set of G. Then, since |X| = κ = 4 ≤ δ − 1, we can apply

Lemma 5.1 and assert that µ(C) = max{d(u,X) : u ∈ V (C)} ≥ (g − 2)/2, for all components

C of G−X. Consider two different, arbitrary components C and C ′ of G−X and observe that

g − 2 ≥ D ≥ µ(C) + µ(C ′) ≥ g − 2,

hence every inequality is an equality. Therefore, D = g − 2 and µ(C) = µ(C ′) = (g − 2)/2 = µ

and Lemma 5.2 applies for both components C and C ′, that is, for all u ∈ Nµ(X) ∩ V (C),

|N(u) ∩Nµ(X) ∩ V (C)| ≥ d(u)− |Nµ(u) ∩X|
≥ d(u)− |X|
= d(u)− 4 ≥ 1.

(5.1)
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Then u has some neighbour z ∈ Nµ(X) ∩ V (C), moreover, Nµ(u) ∩Nµ(z) ∩X = ∅ otherwise a

cycle of length at most d(u, x) + d(z, x) + d(u, z) = 2µ+ 1 = g − 1 is formed.

Let C and C ′ be two different components of G−X. Consider a vertex in each component that

is at the maximum distance from the cut set X, namely, u ∈ Nµ(X)∩C and u′ ∈ Nµ(X)∩C ′.
Then, since D = g − 2, these two vertices must have at least one common neighbour in their

neighbourhood at distance µ which are in the cut setX. More formally, |Nµ(u)∩Nµ(u′)∩X| ≥ 1.

Suppose that the neighbourhood of u at distance µ from u in the cut set X is a subset of the

neighbourhood of u′ at distance µ from u′ in the cut set X, that is, Nµ(u′) ∩X ⊂ Nµ(u) ∩X.

Consider a vertex z ∈ N(u) ∩ Nµ(X) ∩ V (C). Since Nµ(u) ∩ Nµ(z) ∩ X = ∅, it follows that

Nµ(u′)∩Nµ(z)∩X = ∅. A contradiction. Therefore, we have shown that there exists a vertex

x ∈ Nµ(u) ∩ Nµ(u′) ∩X and another x′ ∈ Nµ(u) ∩ (X − Nµ(u′)) ∩X, for all u ∈ Nµ(X) ∩ C
and all u′ ∈ Nµ(X)∩C ′. As a result every vertex that is at distance µ from X has at least two

neighbours at distance µ in X. More formally, |Nµ(u) ∩X| ≥ 2 and |Nµ(u′) ∩X| ≥ 2, for all

u ∈ Nµ(X) ∩ V (C) and, for all u′ ∈ Nµ(X) ∩ V (C ′) (see Figure 5.5).

Nµ(X)

X

N(X)

C C ′

Nµ(X)N(X)

u′u

z1

z2

Nµ(u
′)

Nµ(u)

Figure 5.5: Illustration of proof of Theorem 5.2.

Given u ∈ Nµ(X)∩ V (C) by Equation 5.2 u has at least one neighbour that is also at distance

µ from X. Combining the fact that |Nµ(u) ∩X| ≥ 2, for all u ∈ Nµ(X) ∩ V (C) and |X| = 4

we can conclude that |Nµ(u) ∩ X| = 2, for all u ∈ Nµ(X) ∩ V (C). Then by application of

Lemma 5.2,

|N(u) ∩Nµ(X) ∩ V (C)| ≥ d(u)− |Nµ(u) ∩X|
≥ d(u)− 2

≥ δ − 2.

(5.2)

Therefore, any two shortest paths composed of distinct vertices in N(u) ∩Nµ(X) ∩ V (C) and

any vertex in X \(Nµ(u)∩X) cannot share any vertex in N(X \(Nµ(u)∩X))∩V (C) otherwise a
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cycle of length at most g−2 is formed. Then, |N(x)∩V (C)| ≥ δ−2 for each x ∈ X\(Nµ(u)∩X).

Applying the same reasoning to the neighbours in Nµ(X) ∩ V (C) of some vertex z which is a

neighbour of u, we get |N(x)∩V (C)| ≥ δ−2, for every x ∈ X. Analogously for any other com-

ponent C ′ 6= C of G−X; |N(x)∩V (C ′)| ≥ δ−2, for every x ∈ X. Therefore, d(x) ≥ 2(δ−2) for

each x ∈ X, which contradicts our assumption that ∆ ≤ 2δ−5. Thus the proposition holds.

In this chapter, we have shown that any graph G is 2-connected if diameter D ≤ g− 1 for even

girth g, and for odd girth g and maximum degree ∆ ≤ 2δ − 1, where δ is the minimum degree.

Furthermore, we proved that any graph G of diameter D ≤ g−2 is 5-connected for even girth g

and ∆ ≤ 2δ− 1. In the next chapter we improve on the known results on the superconnectivity

of a graph by proving that an r-regular graph G with r ≥ 3 and diameter at most g − 2 is

super-κ, when g odd. We further extend these new results to include non regular graphs. More

particularly, a graph with odd girth g and diameter D ≤ g − 2, minimum degree δ ≥ 3 and

maximum degree ∆ ≤ 3δ/2− 1 is super-κ.



Proof is an idol before whom the

pure mathematician tortures him-

self.

Arthur Stanley Eddington, The

Nature of the Physical World 6
Superconnectivity

In this chapter, we present our results on the superconnectivity, more precisely, vertex super-

connectivity, of a graph. Recalling from Chapter 3, a graph is superconnected, for short super-κ,

if all minimum vertex cut sets are trivial. As stated in Section 3.3, Fàbrega and Fiol [58] de-

termined sufficient conditions, in terms of girth g and diameter D, for a graph G to be super-κ

or super-λ connected, namely,

G is super-λ if

{
D ≤ g − 2, g odd,

D ≤ g − 3, g even.

G is super-κ if

{
D ≤ g − 3, g odd,

D ≤ g − 4, g even.

In this chapter, we improve upon the above vertex superconnectivity results for r-regular graphs

with odd girth g by proving that an r-regular graph G with r ≥ 3 and diameter D ≤ g − 2

is super-κ, when g odd. These results are detailed in Section 6.1. In Section 6.2, we extend

our new results for regular graphs by showing that non regular graphs with odd girth g and

diameter D ≤ g − 2, minimum degree δ ≥ 3 and maximum degree ∆ ≤ 3δ/2− 1 are super-κ.

6.1 Superconnectivity of Regular Graphs

In this section we present our new results on the superconnectivity of regular graphs. In

Theorem 6.1 we prove that an r-regular graph G with r ≥ 3 and diameter D ≤ g−2 is super-κ,

when g odd. In our proof of Theorem 6.1 we use the known result contained in Proposition 6.1

and our new Lemma 6.1.

85
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Proposition 6.1 [13] Let G = (V,E) be a connected graph with girth g and minimum degree

δ ≥ 2. Let X ⊂ V be a nontrivial vertex cut (κ1-cut) with cardinality |X| < ξ(G). Then for

each connected component C of G−X there exists some vertex u ∈ V (C) such that d(u,X) ≥
d(g − 3)/2e; furthermore if g is odd, then |N(g−3)/2(u) ∩X| ≤ 1.

Since we are considering graphs with odd girth we use Proposition 6.1 to assert that for each

connected component of C of G − X there exists some vertex u in C such that the distance

from the vertex u to the cut set X is at least d(u,X) ≥ (g − 3)/2 and there is at most one

vertex x in the cut set X such that d(u, x) = (g−3)/2, alternatively, |N(g−3)/2(u)∩X| ≤ 1. We

now use this result to prove some structural properties of a component C, when g is odd and

the maximum distance from any vertex u in the component C is equal to µ = max{d(u,X) :

u ∈ V (C)} = (g − 3)/2.

♦ Lemma 6.1 Let G be a κ1-connected graph with odd girth and minimum degree δ ≥ 3. Let

X be a nontrivial vertex cut (κ1-cut) with |X| = δ and assume that there exists a connected

component C of G−X such that µ = max{d(u,X) : u ∈ V (C)} = (g−3)/2. Then the following

assertions hold:

(i) If u ∈ V (C) is such that d(u,X) = µ and |Nµ(u)∩X| = 1, then d(u) = δ and u has δ− 1

neighbours zi, for i = 1, 2, . . . δ − 1, such that d(zi, X) = µ and |Nµ(zi) ∩X| = 1. for all

zi. Moreover, |Nµ+1(u) ∩X| = δ − 1 and X is a set of independent vertices.

(ii) There exists a (δ − 1)-regular subgraph Γ such that every vertex w ∈ V (Γ) has degree

dG(w) = δ and is at distance µ from the cut set X, more formally, d(w,X) = µ.

(iii) If g = 5 then |N(X) ∩ V (C)| ≥ δ(δ − 1).

(iv) If g ≥ 7 then |N(X) ∩ V (C)| ≥ (δ − 1)2 + 2.

Proof. Notice that g ≥ 5 since µ ≥ 1.

(i) Given a vertex u ∈ V (C) such that d(u,X) = µ and |Nµ(u) ∩X| = 1, let x1 be a vertex in

X such that d(u,X) = d(u, x1) = µ and let z1 ∈ N(u) be such that d(z1, x1) = µ − 1. Then

every vertex in N(u) \ {z1} is located into Nµ(X) ∩ V (C), since otherwise, there are at least

two vertices, say zj and zk, such that d(zj , X) = d(zk, X) = µ − 1 and there exist two paths

of length µ from u to x1, namely, u, zj , . . . , x1 and u, zk, . . . , x1, which form a cycle of length

at most 2µ = 2(g − 3)/2 = g − 3 < g. Therefore, there are |N(u) \ {z1}| = d(u) − 1 vertices

zi ∈ N(u) ∩Nµ(X).

Moreover, the sets Nµ(zi)∩X, where zi ∈ N(u) \{z1} and i = 2, . . . , d(u), are pairwise disjoint

(see Figure 6.1), because otherwise, there exist at least two vertices, say zj and zk in N(u)\{z1}
and a vertex xk ∈ X such that the zj −xk path and the zk−xk path both have length µ. Thus

a cycle of length at most 2 + 2µ = 2 + 2(g − 3)/2 < g is created through the vertices zj , u, zk

and xk. Hence,
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u x1

C X

z1

z2

zd(u)

Nµ(X) Nµ−1(X) N(X)

Nµ(z2)

Nµ(zd(u))

Figure 6.1: The pairwise disjoint sets Nµ(zi) ∩X.

|X| = δ ≥ |Nµ(u) ∩X|+
d(u)∑
i=2

|Nµ(zi) ∩X|

≥ 1 + (d(u)− 1)

= d(u) ≥ δ.

(6.1)

From (6.1) the inequalities are forced to be equalities, that is, d(u) = δ, |Nµ(zi) ∩X| = 1, for

every vertex zi ∈ N(u)− z1, i = 2, . . . , δ, and

X = (Nµ(u) ∩X) ∪ (∪d(u)
i=2 (Nµ(zi) ∩X))

which means that X is a set of independent vertices. Therefore, we obtain that

|Nµ+1(u) ∩X| = | ∪d(u)
i=2 (Nµ(zi) ∩X)| =

d(u)∑
i=2

|Nµ(zi) ∩X| = δ − 1

which finishes the proof of point (i) as shown in Figure 6.2.

(ii) From Proposition 6.1 it follows that there exists a vertex u ∈ Nµ(X) ∩ V (C) such that

|Nµ(u) ∩ X| = 1. By item (i) the degree of u is d(u) = δ and there are δ − 1 vertices

zi ∈ N(u) ∩Nµ(X) such that |Nµ(zi) ∩X| = 1 for i = 2, . . . , δ. Applying the same reasoning

used for proving (i) to the vertices zi, we obtain d(zi) = δ, i = 2, . . . , δ and each zi has δ − 1

neighbours w ∈ Nµ(X) ∩ V (C) such that |Nµ(w) ∩ X| = 1. Iterating this reasoning for each

of the neighbours of zi we obtain a (δ − 1)-regular subgraph Γ in G[Nµ(X) ∩ V (C)] such that

every w ∈ V (Γ) has dG(w) = δ.
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u

C X

z1

z2

Nµ(X) Nµ−1(X) N(X)

zδ

x2

x1

xδ

Figure 6.2: d(u) = δ, |Nµ+1(u) ∩X| = δ − 1 and X is a set of independent vertices.

(iii)+(iv) By item (ii) we know that there exists a (δ−1)-regular subgraph Γ inG[Nµ(X)∩V (C)]

such that every w ∈ V (Γ) has dG(w) = δ, and by item (i), |Nµ(w)∩X| = 1, for every w ∈ V (Γ).

Let u ∈ V (Γ) be and let T = ({u}∪N(u)∪N2(u))∩V (Γ). Then |Nµ−1(T )∩N(X)∩V (C)| ≥ |T |
because otherwise forbidden cycles through u and two different vertices of N2(u)∩V (Γ) of length

at most 2(µ− 1) + 4 = g − 1 would be created. Therefore, since g ≥ 5 we have

|Nµ−1(T ) ∩N(X) ∩ V (C)| ≥ |T |
= 1 + (δ − 1) + (δ − 1)(δ − 2)

= 1 + (δ − 1)2.

(6.2)

Since u ∈ V (Γ) then dG(u) = δ which implies that there exists a unique vertex z1 ∈ N(u) ∩
Nµ−1(X). Let X = {x1, x2, . . . , xδ} denote the elements of the nontrivial cut set and N(u)∩T =

{z2, . . . , zδ} the neighbours of u included in T . Without loss of generality, let Nµ(u)∩X = {x1}
and Nµ(zi) ∩X = {xi} for i = 2, . . . , δ. Since Nµ(X) = N(X) for g = 5, we need to consider

the two cases g = 5 and g ≥ 7 separately.

Case g = 5. Then µ = 1 and ux1, zixi, i = 2, . . . , δ are edges of G. Define the sets Xi =

X \ {x1, xi} and Zi = N(zi) \ {u, xi}. We know |X| = δ and we have shown in (ii) that

d(zi) = δ, therefore |Xi| = |Zi| = δ − 2. Since |N(w) ∩ X| = 1, for every w ∈ Zi, then there

exists a perfect matching between each of the sets Zi and Xi, for all i = 2, 3, . . . , δ. Let wik ∈ Zi
denote the δ− 2 elements of Zi such that wikxk, xk ∈ Xi are the edges of the matching between

Zi and Xi. Since dG(wik) = δ and {xk, zi} ⊂ N(wik), then wik must have δ− 2 neighbours more

in N(X). Furthermore wik has at most one neighbour wjh in Zj = N(zj)\{u, xj} for each j 6= i,

because g = 5. Moreover, if wik has a neighbour in Zk, then there exists an edge wikw
k
h which

forms a cycle wik, xk, zk, w
k
h, w

i
k of length four, therefore N(wik) ∩ Zk = ∅ (see Figure 6.3).
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u

C X

w3
2

w3
δ

x2

x3

z1 = x1

xδ

z2

z3

zδ Nµ(X) = N(X)

wδ
2 wδ

3

w2
δ w2

3

Z3

Z2

Zδ

Figure 6.3: An illustration of the proof that |N(X)∩V (C)| ≥ δ(δ− 1) for g = 5. The dash line
is a forbidden edge.

Consequently, |N(wik) ∩ (∪δj=2Zj − {Zi, Zk})| ≤ δ − 3, which implies that each wik ∈ Zi has at

least one new neighbour in N(X)− T . As an illustration see the graph depicted in Figure 6.6.

Therefore,

|N(X) ∩ V (C)| ≥ |T |+ |Zi| ≥ 1 + (δ − 1)2 + (δ − 2) = δ(δ − 1)

and thus (iii) follows.

Case g ≥ 7. In this case the subgraph of Γ induced by T is a tree and by (6.2) we have

|N(X)∩V (C)| ≥ 1+(δ−1)2. We reason by contradiction assuming |N(X)∩V (C)| = (δ−1)2+1.

Again by (6.2) we know |Nµ−1(T ) ∩ N(X) ∩ V (C)| = |T | = 1 + (δ − 1)2 which implies

|Nµ−1(u)∩N(X)∩V (C)| = 1, |Nµ−1(zi)∩N(X)∩V (C)| = 1 and |Nµ(zi)∩N(X)∩V (C)| = δ−1

for i = 2, . . . , δ. Let {z′′1 } = Nµ−1(u)∩N(X)∩V (C) = N(x1)∩V (C). Then, since g ≥ 7, there

exists w ∈ N2(zi) ∩ V (Γ) for some i ∈ {2, . . . , δ} such that w 6∈ T and z′′1 6∈ Nµ−1(w) ∪Nµ(w),

because otherwise a forbidden cycle through u,w, z′′1 of length at most 2µ+2 would be created.

Therefore (Nµ(w)∪Nµ+1(w))∩X ⊆ X \ {x1}. Applying Lemma 6.1(i) we get Nµ+1(w)∩X =

{x2, . . . , xδ}, hence there exists xj ∈ {x2, . . . , xδ}, j 6= i, such that xj ∈ Nµ(w) ∩ Nµ+1(w)

creating a cycle through xj and w of length 2µ + 1 which is a contradiction. Therefore

|N(X) ∩ V (C)| ≥ 2 + (δ − 1)2 as required.
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We now use Lemma 6.1 to prove Theorem 6.1 which improves Theorem 3.5 for regular graphs

of odd girth.

♦ Theorem 6.1 Let G be an r-regular graph with r ≥ 3, odd girth g, and diameter D ≤ g−2.

Then G is super-κ, when g ≥ 5 and a complete graph otherwise.

Proof. If g = 3 then the diameter is D ≤ g− 2 = 1 and G is a complete graph. Assume g ≥ 5.

We reason by contradiction to show that G is super-κ, for g ≥ 5. Assume that G is not super-κ.

Then there exists a minimum nontrivial cut set X such that |X| = κ1 = κ ≤ δ. Applying

Theorem 3.5 tells us that a graph with odd girth g and diameter D ≤ g − 2 is maximally

connected, that is, κ = δ. Since by our premises G is an r-regular graph, κ1 = κ = δ = r.

Let X be a κ1-cut with |X| = r. Let C and C ′ denote two components of G − X. Let µ =

max{d(u,X) : u ∈ V (C)} and µ′ = max{d(u′, X) : u′ ∈ V (C ′)} as shown in Figure 6.4.

From Proposition 6.1, it follows µ ≥ (g − 3)/2 and µ′ ≥ (g − 3)/2. Assume µ ≥ (g − 1)/2

and µ′ ≥ (g − 1)/2. Then the diameter D ≥ µ + µ′ ≥ 2(g − 1)/2 = g − 1, contradicting our

assumption that D ≤ g − 2. Therefore, there exists at most one component, C ′, such that

µ′ = (g − 1)/2, and any other component C 6= C ′ must have µ = (g − 3)/2.

Applying Lemma 6.1, we can determine the number of neighbours of X that are in the com-

ponent C, that is, |N(X) ∩ V (C)| ≥ δ(δ − 1) = r2 − r, when g = 5 and |N(X) ∩ V (C)| ≥
(δ − 1)2 + 2 = (r − 1)2 + 2, when g ≥ 7. Since G is r-regular we can use this result to

determine the maximum possible number of neighbours of X in any component C ′ 6= C,

namely, |N(X) ∩ V (C ′)| ≤ |N(X)| − |N(X) ∩ V (C)| ≤ r2 − (r2 − r) = r, when g = 5,

and |N(X) ∩ V (C ′)| ≤ r2 − ((r − 1)2 + 2) ≤ 2r − 3, when g ≥ 7.

Let F ′ = [X,V (C ′)] denote the set of edges having one vertex in X and the other vertex in

V (C ′). Then F ′ is an edge cut set of cardinality |F ′| ≤ 2r − 3. Assume that F ′ is a trivial

edge cut set, then |F ′| = r and F ′ contains all the edges incident with some vertex xi ∈ X or

v′ ∈ V (C ′) as demonstrated by the dashed lines in Figure 6.4. If v′ ∈ V (C ′) then the vertex

cut set X consists of r vertices that are exactly the neighbours of v′, which contradicts our

premise that X is a nontrivial vertex cut set. If xi ∈ X, then X \ {xi} is a vertex cut set with

cardinality |X| − 1, contradicting our premise that X is a minimal vertex cut set. Therefore

F ′ is a nontrivial edge cut and λ1 ≤ |F ′| < ξ = 2r − 2. Applying Theorem 3.10 we know that

λ1 = ξ for D ≤ g − 2. As a consequence |X| = κ1 > r and G is super-κ.

The graph depicted in Figure 6.5 shows a non regular graph of minimum degree δ = 3, girth

g = 5 and diameter D = 3 which is not super-κ. Consequently, the property of degree regularity

is essential to establish Theorem 6.1.
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u

z2

Nµ(X)
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X

N(X)

x2

x1

xr

C C ′

u′

Nµ′(X)N(X)

v′

v1

v2

vrxi

F ′ = [X, V (C ′)]

Figure 6.4: Possible trivial edge cut sets F shown in dashed lines.

x2

x1

x3

XC C ′

N(X)N(X)

Figure 6.5: A graph with g = 5 and κ1 = δ = 3.

In Theorem 6.2 we extend Theorem 6.1 to include non regular graphs with girth g, minimum

degree δ ≥ 3 and ∆ ≤ 3δ/2−1. In order to prove Theorem 6.2 the known results in Proposition

6.1 and Lemma 6.1 and two new results contained in Lemmas 6.2 and 6.3 are required.

Lemma 6.2 uses the bounds established in Lemma 6.1 (iii) and (iv) on the number of vertices

in a component C that are also in the neighbourhood of X, that is, |N(X)∩|N(C)|, to establish

bounds on the number of edges. Observing that the number of edges |[X,V (C)]| ≥ δ(δ − 1)

demonstrates that the bound given in Lemma 6.1 (iii) for g = 5 also holds for g ≥ 7. Moreover,

if µ = max{d(u,X) : u ∈ V (C)}, where X is a cut set and C is a component of G−X, we denote

the set of vertices in component C at distance µ from X with the notation Nµ(X) ∩ V (C).
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♦ Lemma 6.2 Let G be a κ1-connected graph with odd girth and minimum degree δ ≥ 3. Let

X be a κ1-cut with |X| = δ and assume that there exists a connected component C of G −X
such that µ = max{d(u,X) : u ∈ V (C)} = (g − 3)/2. Then the following assertions hold.

(i) For all xi ∈ X there exists a vertex u ∈ Nµ(X)∩V (C) such that d(u, xi) = (g− 3)/2 = µ

and d(u, xj) = (g − 1)/2 = µ+ 1, for all xj ∈ X − xi.
(ii) |[x, V (C)]| ≥ δ − 1, for every x ∈ X, and therefore |[X,V (C)]| ≥ δ(δ − 1).

Proof. Notice that g ≥ 5 since µ ≥ 1.

(i) Suppose that there exists some x ∈ X such that d(w, x) ≥ µ+ 1, for all w ∈ Nµ(X)∩V (C).

By Lemma 6.1(i), there exists a vertex u ∈ Nµ(X) ∩ V (C) and δ − 1 vertices z2, . . . , zδ ∈
Nµ(X)∩V (C)∩N(u). Then (∪δi=2Nµ(zi)∪Nµ(u))∩X ⊆ X −x, which means that there exist

two distinct vertices zj , zk ∈ N(u)∩Nµ(X)∩V (C) : j 6= k such that Nµ(zj)∩Nµ(zk)∩X 6= ∅.
However this is a contradiction because cycles of length at most g − 1 are created.

(ii) By Lemma 6.1 (i), for every u ∈ Nµ(X) ∩ V (C) there exists some xu ∈ X such that

d(u, xu) = µ and d(u, x) = µ+ 1, for every x ∈ X − xu. Hence, |N(u) \ (Nµ(X) ∩ V (C))| = 1.

Let X = {x1, x2, . . . , xδ} and u ∈ Nµ(X) ∩ V (C). Suppose that d(u, x1) = d(u,X) = µ and let

z2, . . . , zδ ∈ N(u) ∩Nµ(X) ∩ V (C). Recall that the sets Nµ(zi) ∩X must be pairwise disjoint

(see Figure 6.1), otherwise G contains a cycle of length 2µ + 2 = g − 1 through the vertices

x, . . . , zi, u, zj , . . . , x. Suppose that d(zi, xi) = d(zi, X) = µ, i = 2, . . . , δ. By Lemma 6.1 (i),

each vertex zi has δ−1 neighbours u, zi1, . . . , ziδ−2 in Nµ(X)∩V (C) and d(zij , x1) = (g−1)/2,

for every j = 1, . . . , δ − 2, otherwise, as d(u, x1) = µ and both u and zij ∈ Nµ(X) ∩ V (C) it

follows that there exists a cycle of length at most g−1. Let Pu,v denote a shortest path in G from

u to v, hence the number of edges in Pu,v is equal to the distance from u to v, that is, |E(Pu,v)| =
d(u, v). Therefore, |E(Pzij ,x1)| = µ+1 and |E(Pu,x1)| = µ. Also, V (Pzij ,x1)∩V (Pzih,x1) = {x1}
and V (Pu,x1)∩V (Pzij ,x1) = {x1}, for every distinct j, h ∈ {1, . . . , δ− 2}, otherwise there exists

a cycle of length at most g − 1. Then |[x1, V (C)]| ≥ δ − 1.

Furthermore, since zi ∈ Nµ(X) ∩ V (C) and d(zi, xi) = µ, for i = 2, . . . , δ, the above result ap-

plies for all vertices in X, that is, for every vertex xi ∈ X there are at least δ−1 edges between

the cut set and the component C. More formally, |[xi, V (C)]| ≥ δ − 1, for every i = 1, . . . , δ.

Therefore, |[X,V (C)]| ≥ δ(δ − 1).

6.2 Superconnectivity of Non-regular Graphs

In order to prove Lemma 6.3 and Theorem 6.2 we introduce some notation to refer to the sets

S+
u (v), S=

u (v) and S−u (v) which partition the neighbours of v, excluding u, according to their
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distance from the cut set X. Let G = (V,E) be a graph with vertex cut X ⊂ V , v ∈ V \X,

u ∈ N(v) and z ∈ N(v)− u. Then:

S+
u (v) = {z ∈ N(v)− u : d(z,X) = d(v,X) + 1};
S=
u (v) = {z ∈ N(v)− u : d(z,X) = d(v,X)};
S−u (v) = {z ∈ N(v)− u : d(z,X) = d(v,X)− 1};

(6.3)

♦ Lemma 6.3 Let G be a κ1-connected graph with odd girth g ≥ 5, minimum degree δ ≥ 3 and

maximum degree ∆. Let X be a κ1-cut with δ vertices and assume that there exists a component

component C ′ of G−X such that µ′ = µ+ 1 = max{d(u′, X) : u′ ∈ V (C ′)} = (g − 1)/2.

If D ≤ g − 2 then, for all u′ ∈ Nµ′(X) ∩ V (C ′):

(i) d(u′, x) = (g − 1)/2, for every x ∈ X.

(ii) |[x,Nµ(u′) ∩N(X)]| ≥ 1, for every x ∈ X.

(iii) For every x ∈ X, |[x, V (C ′)]| ≤ ∆− δ + 1.

(iv) |N(u′) \ F(C)| ≥ 2 if ∆ ≤ 2δ − 2.

(v) For every u′ ∈ Nµ′(X) ∩ V (C ′), |N(u′) ∩Nµ+1(X) ∩ V (C ′)| ≤ ∆− δ.
(vi) If v′ ∈ N(u′) \ (Nµ+1(X) ∩ V (C ′)), then |S+

u′(v
′)| ≤ ∆− δ if ∆ ≤ 2δ − 2.

(vii) There exists some v′ ∈ N(u′) \ (Nµ′(X)∩ V (C ′)) such that |S+
u′(v

′)| ≤ max{0,∆− δ− 1}
if ∆ < 3δ/2.

Proof. Since D ≤ g− 2, it follows from Proposition 6.1 that for any other component C 6= C ′

of G − X the maximum distance from the cut set to any other vertex in the component is

max{d(u,X) : u ∈ V (C)} = (g − 3)/2 = µ. (As demonstrated in the proof of Theorem 6.1).

Recall that for u ∈ Nµ(X)∩V (C) and zj , zk ∈ N(u)∩Nµ(X)∩V (C) the sets Nµ(zi)∩X must

be pairwise disjoint (see Figure 6.1), otherwise G contains a cycle of length 2µ + 2 = g − 1

through the vertices x, . . . , zi, u, zj , . . . , x.

(i) Since d(u′, X) = (g−1)/2, then d(u′, x) ≥ (g−1)/2, for all x ∈ X. Suppose that there exist

xi ∈ X such that d(u′, xi) ≥ (g+1)/2. By Lemma 6.2 (i) there exists a vertex u ∈ Nµ(X)∩V (C),

where C 6= C ′ is a component of G − X, such that d(u, xi) = µ and d(u, x) = µ + 1, for all

x ∈ X − xi. Hence,

d(u, u′) ≥ min{d(u, x) + d(x, u′) : x ∈ X} ≥ g − 1

which contradicts our premise that D ≤ g − 2.

(ii) Suppose there exists some x ∈ X such that |[x,Nµ(u′)∩N(X)]| = 0, then d(x, u′) ≥ (g+1)/2

contradicting (i).
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(iii) By Lemma 6.2 (ii), we know there are at least δ − 1 edges between a vertex x ∈ X and

a component C, that is, |[x, V (C)]| ≥ δ − 1, where C 6= C ′ is a component of G − X. Since

d(x) ≤ ∆, there are at most ∆ − (δ − 1) edges incident to x that are adjacent to vertices

v /∈ V (C). Therefore, |[x, V (C ′)]| ≤ ∆− δ + 1.

(iv) Assume that |N(u′)\(Nµ′(X)∩V (C ′))| = 1, then |N(u)∩(Nµ′(X)∩V (C ′))| ≥ δ−1. By (ii),

every x ∈ X is adjacent to some vertex in Nµ(z)∩N(X), for all z ∈ N(u′)∩ (Nµ′(X)∩V (C ′)).

Then, since for u ∈ Nµ(X) ∩ V (C) and zj , zk ∈ N(u) ∩Nµ(X) ∩ V (C) the sets Nµ(zi) ∩X are

pairwise disjoint (see Figure 6.1), it follows that |[x, V (C ′)]| ≥ δ which means that d(x) ≥ 2δ−1

due to Lemma 6.2 (ii), producing a contradiction. Then |N(u) \ (Nµ′(X) ∩ V (C ′))| ≥ 2.

(v) Assume that u′ has ∆− δ+ 1 neighbours in Nµ′(X)∩V (C ′). Then combining the fact that

for u ∈ Nµ(X) ∩ V (C) and zj , zk ∈ N(u) ∩ Nµ(X) ∩ V (C) the sets Nµ(zi) ∩ X are pairwise

disjoint (see Figure 6.1), and (ii) it follows that |[x, V (C ′)]| ≥ ∆ − δ + 2, for every x ∈ X,

contradicting (iii). Hence |N(u′) ∩ (Nµ′(X) ∩ V (C ′))| ≤ ∆− δ.

(vi) Assume that the set S+
u (v) contains s vertices and let S+

u (v) = {u1, u2 . . . , us} ∈ S+
u (v).

Since v 6∈ (Nµ′(X) ∩ V (C ′)), we have d(v,X) = d(v, xv) = µ for some xv ∈ X. By item (iv)

we know that |N(u′) \ (Nµ′(X) ∩ V (C ′))| ≥ 2, let z ∈ (N(u) − v) \ (Nµ′(X) ∩ V (C ′)), then

d(z,X) = d(z, xz) = µ for some xz ∈ X. Observe that xv 6= xz and d(v, xz) ≥ (g − 1)/2

otherwise a cycle of length at most g − 1 exists.

By (i), d(ui, xz) = (g − 1)/2, for all i = 1, 2, . . . , s. Then, V (Puj ,xz ) ∩ V (Puk,xz ) = {xz} for

j 6= k, otherwise, since uj , uk ∈ S+
u (v), a cycle of length at most g − 1 exists.

Also, since d(u, xz) = (g− 1)/2 and ui ∈ N2(u), for all i = 1, 2, . . . , s, it follows that V (Pu,xz )∩
V (Pui,xz ) = {xz}, otherwise a cycle of length at most g−1 exists which is a contradiction. Then

|[xz, V (C ′)]| ≥ s+ 1 yielding ∆ ≥ d(xz) ≥ δ + s because of Lemma 6.2 (ii), hence s ≤ ∆− δ.

(vii) Since ∆ < 3δ/2 ≤ 2δ− 2 we can apply (vi) for v′ ∈ N(u′) \ (Nµ+1(X)∩V (C ′)) and assert

that |S+
u′(v

′)| ≤ ∆ − δ. If |S+
u′(v

′)| < ∆ − δ we are done. Therefore, we assume |S+
u (v)| =

∆− δ ≥ 1, for every v ∈ N(u) \ F(C) and let u1, . . . , u∆−δ ∈ S+
u (v). Clearly S−u (v) 6= ∅.

Assume that S=
u (v) 6= ∅ and let u ∈ S=

u (v). Then d(u,X) = d(u, xu) = (g − 3)/2 for some

xn ∈ X. By item (i), d(u, xn) = (g − 1)/2, then V (Pn,xn) ∩ V (Pu,xn) = {xn} otherwise a cycle

of length at most g− 2 exists. As d(ni, xn) = (g− 1)/2, then V (Pn,xn)∩V (Pni,xn) = {xn} and

V (Pu,xn)∩V (Pni,xn) = {xn}, for all i = 1, . . . ,∆−δ and d(u, xn) = (g−1)/2, otherwise a cycle

of length at most g − 1 exists. Furthermore, V (Pni,xn) ∩ V (Pnj ,xn) = {xn}, for every distinct

i, j = 1, . . . ,∆− δ. Then |[xn, V (C)]| ≥ ∆− δ+ 2 which contradicts (iii), therefore S=
u (v) = ∅,

for every v ∈ N(u) \ F(C). Hence d(v) = 1 + |S−u (v)| + |S+
u (v)| = 1 + |S−u (v)| + ∆ − δ. If

|S−u (v)| = 1 then d(v) = ∆− δ+ 2 following ∆ ≥ 2δ− 2 which contradicts our assumption that

∆ ≤ 3δ/2− 1. Therefore, |S−u (v)| ≥ 2.
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By (v), |N(u)∩F(C)| ≤ ∆− δ. Then there are d(u)−∆ + δ ≥ 2δ−∆ vertices in N(u) \F(C).

Let v1, . . . , v2δ−∆ in N(u) \ F(C). Since |S−u (vi)| ≥ 2, for every i = 1, . . . , 2δ −∆, then

δ = |X| ≥
2δ−∆∑
i=1

|N(g−5)/2(S−u (vi)) ∩X| ≥ 2(2δ −∆),

clearly N(g−5)/2(S−u (vi)) ∩N(g−5)/2(S−u (vj)) ∩X = ∅ for i 6= j, i, j = 1, . . . , 2δ −∆.

Since ∆ < 3δ/2 we obtain that |X| ≥ 4δ − 2∆ ≥ δ + 1, which is a contradiction.

♦ Theorem 6.2 Let G be a graph with odd girth g, diameter D ≤ g − 2, minimum degree

δ ≥ 3 and maximum degree ∆ ≤ 3δ/2− 1. Then G is super-κ.

Proof. If g = 3 then the diameter is D ≤ g − 2 = 1 and G is a complete graph, which is

by definition superconnected. Assume g ≥ 5. We reason by contradiction to show that G is

super-κ, for g ≥ 5. Assume that G is not super-κ. Then there exists a minimum nontrivial

vertex cut X such that |X| = κ1 = κ ≤ δ. Applying Theorem 3.5 tells us that a graph with

odd girth g and diameter D ≤ g − 2 is maximally connected, that is, κ = δ.

Let X be a κ1-cut with |X| = δ. Let C and C ′ denote two components of G − X. Let µ =

max{d(u,X) : u ∈ V (C)} and µ′ = max{d(u′, X) : u′ ∈ V (C ′)} as shown in Figure 6.4.

From Proposition 6.1, it follows µ ≥ (g − 3)/2 and µ′ ≥ (g − 3)/2. Assume µ ≥ (g − 1)/2 and

µ′ ≥ (g − 1)/2. Then the diameter is

D ≥ d(u, u′) ≥ d(u,X) + d(u′, X) ≥ µ+ µ′ ≥ 2(g − 1)/2 = g − 1.

This contradicts our assumption that D ≤ g−2. Therefore, there exists at most one component,

C ′, such that µ′ = (g − 1)/2, and any other component C 6= C ′ must have µ = (g − 3)/2.

Assume that every component of G − X has µ = (g − 3)/2. Then by application of Lemma

6.2 (ii) there are at least δ(δ − 1) edges between the vertex cut X and each of the components

C,C ′ ∈ G − X. Furthermore, the sum of edges having at least one vertex x ∈ X is at most

∆|X| = ∆δ. Therefore,

δ∆ ≥ |[X,V (G)]| ≥ |[X,C]|+ |[X,C ′]| ≥ 2δ(δ − 1).
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Dividing the above inequality by δ gives ∆ ≥ 2δ − 2 which contradicts our assumption that

∆ < 3δ/2 for values of δ ≥ 3. Therefore, there exists a component, C ′, such that µ′ =

max{d(u′, X) : u′ ∈ V (C ′)} = (g−1)/2 and another component C such that µ = max{d(u,X) :

u ∈ V (C)} = (g − 3)/2.

Let X = {x1, . . . , xδ} and u ∈ Nµ(X) ∩ V (C), by Lemma 6.1 (i), there exists some vertex

x1 ∈ X, such that d(u,X) = d(u, x1) = (g−3)/2 and d(u, xi) = (g−1)/2, for every i = 2, . . . , δ,

hence, without lost of generality, assume that z2, . . . , zδ ∈ N(u′)∩Nµ(X)∩V (C). Observe that

Nµ(zi) ∩ Nµ(zj) ∩X = ∅ otherwise a cycle is formed through zi, zj and a vertex x ∈ X. The

length of the cycle being,

d(x, zi) + d(x, zj) + d(zi, zj) = µ+ µ+ 2 = (g − 3)/2 + (g − 3)/2 + 2 = g − 1,

resulting in a contradiction. Hence, d(zi, xi) = (g − 3)/2, for every i = 2, . . . , δ.

Let u′ ∈ N ′µ(X) ∩ V (C ′), where µ′ = max{d(u′, X) : u′ ∈ V (C ′)} = (g − 1)/2 then by

Lemma 6.3 (v), |N(u′)∩N ′µ(X)∩ V (C ′)| ≤ ∆− δ. Suppose that |N(u′)∩N ′µ(X)∩ V (C ′)| = t,

where t ∈ {0, . . . ,∆ − δ}. Since the sets Nµ(u) ∩ N(X) ∩ V (C) are pairwise disjoint, for all

u ∈ N(u) ∩N ′µ(X) ∩ V (C), for all u ∈ N(u) ∩N ′µ(X) ∩ V (C), by Lemma 6.3 (ii) every x ∈ X
satisfies

∣∣∣∣∣
[
x,

⋃
u∈N ′µ(u)∩N(X)∩V (C′)

Nµ(u) ∩N(X) ∩ V (C)

]∣∣∣∣∣ ≥ t.
For every v ∈ N(u) \ (N ′µ(X) ∩ V (C ′)) clearly |S−u (v) ∪ S=

u (v) ∪ S+
u (v)| ≥ δ − 1; as by Lemma

6.3 (vi), |S+
u (v)| ≤ ∆ − δ, then |S−u (v) ∪ S=

u (v)| ≥ 2δ −∆ − 1 and by Lemma 6.3 (vii), there

exist a vertex v∗ ∈ N(u) \ (N ′µ(X) ∩ V (C ′)) such that |S−u (v∗) ∪ S=
u (v∗)| ≥ 2δ −∆.

Then, since g ≥ 5,∣∣∣∣∣ ⋃
v∈N(u)\(N ′µ(X)∩V (C′))

(S−u (v) ∪ S=
u (v))

∣∣∣∣∣ ≥ (2δ −∆− 1)(δ − t) + 1.

Since, for all v, v′ ∈ N(u) \ (N ′µ(X) ∩ V (C ′)) and w ∈ N(u) ∩ N ′µ(X) ∩ V (C ′), the sets

N(g−5)/2(S=
u (v))∩N(X), N(g−5)/2(S=

u (v′))∩N(X), N(g−5)/2(v)∩N(X), N(g−5)/2(v′)∩N(X)

and N(g−3)/2(w) ∩N(X) are pairwise disjoint, then

|N(X)| ≥ (2δ −∆− 1)(δ − t) + 1 + t.

Thus, by Lemma 6.3 (ii) there exist a vertex x ∈ X such that
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∣∣[x, V (C)
]∣∣ ≥ t+

⌈
(2δ −∆− 1)(δ − t) + 1

δ

⌉
.

Since 2δ−∆−1
δ ≤ 1, then

∣∣[x, V (C)
]∣∣ ≥ ⌈ (2δ −∆− 1)δ

δ
+

1

δ

⌉
= d2δ −∆− 1 +

1

δ

⌉
Furthermore, by Lemma 6.3 (iii), |[x, V (C)]| ≤ ∆− δ + 1, then

d2δ −∆− 1 +
1

δ
e ≤ ∆− δ + 1

which allows us to conclude that d 3δ
2 + 1

2δ − 1e ≤ ∆, which contradicts the assumption that

∆ ≤ 3δ/2− 1.

Therefore G is super-κ.

The fact that Theorem 6.2 is tight is demonstrated in Figure 6.6 which depicts a graph G,

having δ = 3 and ∆ = 4, odd girth g = 5 and diameter D = g − 2 = 3 which is not super-κ.
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Figure 6.6: A graph with δ = 3, ∆ = 4, odd girth g = 5 and D = g− 2 = 3 having κ1 = δ = 3.

In this chapter we improved upon the results of Fàbrega and Fiol [58] who determined sufficient

conditions, in terms of girth g and diameter D, for a graph G to be super-κ or super-λ connected.

We showed that an r-regular graph G, with r ≥ 3, odd girth g and diameter D ≤ g−2 is super-

κ. Furthermore we proved that a non regular graph with odd girth g and diameter D ≤ g − 2,

minimum degree δ ≥ 3 and maximum degree ∆ ≤ 3δ/2 − 1 is super-κ. These new results are

collated, along with those presented in the previous chapter and other known results on sufficient

conditions in terms of diameter, girth, maximum and minimum degree, for good connectivity,

and presented in the following chapter.
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7
Summary and Future Research

In this thesis, we considered two important problems in extremal graph theory. Firstly, deter-

mining the extremal number, ex(n; t), and finding corresponding extremal graphs G ∈ EX(n; t),

for given values of n and t. Secondly, establishing sufficient conditions, in terms of degree, di-

ameter and girth, under which a graph has good connectivity. In this chapter we summarise

the main findings of the thesis and present a number of open problems for future research.

The central problem when considering extremal {C2, C3, . . . , Cn}-free graphs is that of de-

termining the value of ex(n; t) and finding all the corresponding extremal graphs. There are

infinitely many values of n and t for which this problem can be considered. For some values of n

and t this problem has been shown to be very difficult, for example, determining if the extremal

number ex(3250, 4) is 92,625 or not. This question is equivalent to determining the existence

of the Moore graph with degree 57 and diameter 2 which is a question that is central to the

degree/diameter problem. The same question can be expressed in terms of the degree/girth

problem, more precisely, “Does the (57,5)-cage have order 3250, or not?”. The answer to this

question has been sought for over 50 years. For this reason we focus our future research on

some particular values of ex(n; t) as detailed in the following paragraphs.

No new exact values of ex(n; 4) or corresponding extremal graphs have been determined since

those published for n ≤ 200 by Garnick, Kwong and Lazebnik [66] in 1993. However, in

Section 4.4, we improved the current best known lower bounds on ex(n; t) for 73 ≤ n ≤ 200,

for all but nine values of n. Furthermore, we were able to create graphs with order n and girth

t+1 that had one more edge than the graphs that provide the current best known lower bounds

given in [66] for ex(35; 4) and ex(45; 4). Despite many attempts, we were unable to make any

other improvements on ex(n; 4), for 31 ≤ n ≤ 49 and, therefore, we suspect these lower bounds

are tight.

98



99 7. Summary and Future Research

In Chapter 3, we examined the relationship between the degree/girth problem and the problem

of determining the extremal number and finding the corresponding extremal graphs. In 1993,

Garnick, Kwong and Lazebnik [66] showed that EX(19; 4) = {(4, 5)-cage} and ex(19; 4) = 38.

Furthermore, the same authors showed that ex(30; 4) = 76, from which we can deduce that

the four (5,5)-cages are not extremal since these cages have 30 vertices and 75 edges. Recently,

Abajo and Diánez [3] showed that EX(24; 6) = {(3, 7)-cage}. Moreover, we know that all

Moore cages are extremal graphs. Currently the only known cages that are known not to be

extremal graphs are the four (5,5)-cages. In Table 7.1 we list all current known cages for which

it is currently unknown whether they are extremal graphs or not. We would like to determine

if these graphs are extremal or not.

n(k, g) M(k, g) No. of (n, k)-cages exl(n; t) ex(n; t) exu(n; t))

n(6, 5) = 40 37 1 120 ≤ ex(40; 4) ≤ 125
n(7, 6) = 90 86 1 315 ≤ ex(90; 5) ≤ 322
n(4, 7) = 67 53 ? 134 ≤ ex(67; 6) ≤ 144
n(3, 9) = 58 46 18 87 ≤ ex(58; 8) ≤ 91
n(3, 10) = 70 62 3 105 ≤ ex(70; 9) ≤ 107
n(3, 11) = 112 94 1 168 ≤ ex(112; 10) ≤ 173

Table 7.1: Cages that attain the current best known lower bound on ex(n; t), for n = n(k, g)
and t = g − 1.

In Section 4.5, we showed that a number of graphs when subdivided form infinite families of

extremal graphs, namely, the complete graphs K2, K3, and K4, the complete bipartite graphs

K2,3, K3,3, K3,4, the Petersen graph, the Heawood graph and the Tutte-Coxeter cage. During

the course of our research we found some other subdivided graphs that gave the current best

known lower bounds on the ex(n; t) for some values of n and t. We suspect that some of these

graphs may also form infinite families of extremal graphs when subdivided. In particular, we

would like to determine if the graphs listed in Table 7.2 are extremal or not.

Graph Subdivided graph exl(n; t) ex(n; t) exu(n; t)

K4,4 s1K4,4 32 ex(24; 7) = 32
K4,4 s2K4,4 48 ≤ ex(40; 11) ≤ 49
McGee (3,7)-cage s1MG 72 ≤ ex(60; 13) ≤ 74
McGee (3,7)-cage s2MG 108 ≤ ex(96; 20) ≤ 110
(3,9)-cage s1C39 174 ≤ ex(145; 17) ≤ 180
(3,9)-cage s2C39 261 ≤ ex(232; 26) ≤ 267
(3,10)-cage s1C310 210 ≤ ex(175; 19) ≤ 214
(3,10)-cage s2C310 315 ≤ ex(280; 29) ≤ 319
Balaban (3,11)-cage s1Bal 336 ≤ ex(280; 21) ≤ 344
Balaban (3,11)-cage s2Bal 504 ≤ ex(448; 32) ≤ 512
Benson (3,12)-cage s1Ben 378 ≤ ex(315; 23) ≤ 381
Benson (3,12)-cage s2Ben 567 ≤ ex(504; 35) ≤ 570

Table 7.2: Subdivided graphs that provide the current best known lower bound on the corre-
sponding extremal numbers.
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In Chapter 4, we introduced our “Grow and Prune” (GAP) algorithm. The pseudocode for

our GAP algorithm is contained in Appendix A. We used our GAP algorithm to generate a

number of graphs with size greater than the current best known lower bounds on ex(n; t), for

t = 4, 5, . . . , 11 and n ≤ 200. Notably, for ex(n; 4) many of our new lower bounds improved

upon the current best known lower bounds established by Garnick, Kwong and Lazebnik [66].

Furthermore, for t = 4 and 6, we were able to improve upon the lower bounds recently published

by Abajo and Diánez [2] and Abajo, Balbuena and Diánez [1].

Our GAP algorithm “Grows” a graph G by finding two arbitrary vertices u and v whose distance

from each other is equal to the diameter of G, that is, d(u, v) = D. Then, if D = t we add

the edge {u, v}, otherwise we add the path {{u, n + 1}, {n + 1, n + 2}, . . . , {n + k, v}}, where

n + 1, n + 2, . . . , n + k are all new vertices in G. At the end of each iteration of the Grow

algorithm we have either a graph G′ with |V (G′)| = |V (G)| and |E(G′)| = |E(G)| + 1 or a

graph G′′ with |V (G′′)| = |V (G)|+ k and |E(G′)| = |E(G)|+ k + 1.

We believe that there might be a more productive way to chose the vertices u and v that may

improve the growing algorithm. Furthermore, we have experimented with growing a graph

by subdividing an arbitrary edge on a girth cycle but the lower bounds generated using the

subdivision method were equal to, or inferior to, those given by our current growing algorithm.

However, if the goal was to grow an extremal network, vertex by vertex, in such a manner that

the connectivity is at least 2, then subdivision would be the superior method of growth.

Our GAP algorithm “Prunes” a graph G in two steps. The first step consists of finding g

vertices that lie on a girth cycle of G and deleting them one by one. The second step consists of

finding a vertex v ∈ G, such that, deg(v) = δ and deleting it. The second step is then iterated

until |V (G)| = t + 1. In some cases we ran the second step of the algorithm manually and

improved the results by carefully selecting the next vertices to be deleted, for example, after

deleting all of the vertices that were on a girth cycle Cg ⊂ G we would then delete all vertices

in another cycle Ck ∈ G such that |V (Ck) ∩ V (Cg)| is maximal. In the future we would like to

automate this process.

Our GAP algorithm was designed to be used given regular graphs as input graphs. This decision

was made due to the availability of dense (k, g)-graphs that have been found by researchers

working on the degree/girth problem. In Section 4.5, we found new families of extremal graphs

that are not degree regular and intend to revise the GAP algorithm to take advantage of these

graphs in the future.

The current version of our GAP algorithm takes an integer t and an array of integer which

are lower bounds on ex(n; t), for n = 1, 2, . . . 200 as input. Changing the input to a matrix of

lower bounds with dimensions n and t would enable us to perform other operations on input

graphs, for example subdivision. Furthermore, by maintaining a matrix of upper bounds we

could measure the size of the gap between the upper bound and the current best known lower

bound for particular values of ex(n; t). In the context of the degree/diameter problem, a graph
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of order M∆,D−d is said to have defect d. Similarly, when considering the degree/girth problem

a graph of order M(k, g) + e is said to have excess e. A similar measure for the size of the

extremal graphs EX(n; t) could be the edge defect, where the defect is measured in relation

to the upper bound given by application of the Moore bound on irregular graphs, M(k, g). It

would be interesting to determine how many extremal graphs attain the upper bound given by

the Moore bound for irregular graphs.

In Appendix B, we provide a summary of the current best known lower bounds on ex(n; t),

for t = 4, 5, . . . , 11 and n ≤ 200 and the upper bounds generated by application of the Moore

bound for irregular graphs. When the extremal number is known it is shown in bold font in the

corresponding table cell. In order to present an intelligible summary we have not acknowledged

the source of individual lower bounds on ex(n; t). References to the source of the current best

known lower bounds on ex(n; t) can be found in Chapter 4.

In addition to determining the extremal graphs and extremal numbers for the subdivided graphs

detailed in Section 4.5, we used the lower bounds on the extremal numbers generated by our

GAP algorithm and a number of structural properties of extremal graphs to establish further

extremal numbers that were previously unknown. In particular, ex(n; 6), for n = 30, 31, 32;

ex(n; 8), for n = 23, 24, 25, 26; ex(n; 9), for n = 26, 27, 28, 29; and ex(127; 11).

In Chapter 5, we improved upon a result by Balbuena and Marcote [18] by showing that any

graph G is 2-connected if diameter D ≤ g−1 for even girth g, and for odd girth g and maximum

degree ∆ ≤ 2δ − 1, where δ is the minimum degree. Furthermore, we extended the results of

Balbuena, Carmona, Fàbrega and Fiol [11], by proving that any graph G of diameter D ≤ g−2

is 5-connected for even girth g and ∆ ≤ 2δ − 1.

In Chapter 6, we improved known results by Fàbrega and Fiol [58] on the superconnectivity of

a graph. We proved that an r-regular graph with odd girth g, r ≥ 3 and diameter D ≤ g − 2

is super-κ. We then extended these results by showing that non regular graphs with odd girth

g and diameter D ≤ g − 2, minimum degree δ ≥ 3 and maximum degree ∆ ≤ 3δ/2 − 1 are

super-κ.

Table 7.3 contains a summary of current known sufficient conditions to ensure good connectiv-

ities in terms of diameter, girth, maximum, and minimum degree.

Our investigation of extremal graphs was motivated by the belief that they have a number of

properties that are desirable in networks. In particular, we believe that extremal graphs have

good connectivity properties. In Chapter 3, we compared the known results on the connectivity

of Moore graphs and cages in order to provide a benchmark. In summary, all Moore graphs

are maximally connected. Fu, Huang and Rodger [64] conjectured that every (k, g)-cage is k-

connected. We gave a number of results that support this conjecture. Since D ≤ t− 1 ≤ g− 2,

for all extremal graphs, applying Theorem 3.8 tells us that the extremal graphs are maximally

connected, that is, κ = λ = δ for even t. In summary, all extremal graphs having minimum
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D and g Connectivity Conditions Reference

D ≤ g + 1 κ ≥ 2 g odd if G is r-regular, r ≤ 3 [18]

λ ≥ 2 g odd

D ≤ g κ ≥ 2 g odd if G is r-regular [18]

κ ≥ 2 g even if G is r-regular, r ≤ 3

λ ≥ 2 g even

D ≤ g − 1 κ ≥ 2 g odd if ∆ ≤ 2δ − 1 ♦
κ ≥ 2 g even ♦
κ ≥ min{r, 3} g odd if G is r-regular [18]

λ = δ g odd [117]

λ ≥ min {δ, 4} g even [11]

D ≤ g − 2 κ = δ g odd [117]

κ ≥ min{δ, 4} g even [11]

κ ≥ 5 g even if ∆ ≤ 2δ − 5 ♦
κ ≥ min {r, 6} g even if G is r-regular [18]

super-κ g odd if ∆ ≤ 3δ/2− 1 for δ ≥ 3 ♦
super-λ g odd [58]

D ≤ g − 3 super-κ g odd [58]

super-λ

D ≤ g − 4 super-κ [58]

Table 7.3: Sufficient conditions to ensure good connectivities in terms of diameter, girth, max-
imum and minimum degree.

degree δ ≥ 2 and odd girth are super edge connected and maximally connected when t is even.

Tang, Lin, Balbuena and Miller [118] conjectured that extremal graphs are also maximally

connected for odd t. We would like to solve this conjecture and believe that in doing so we

would provide some insight to the conjecture that every (k, g)-cage is k-connected.
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Algorithm 1 Grow and Prune

Input: integer t

integer LowerBounds[200]

graph G

Output: LowerBounds[200]

procedure grow(G,t,LowerBounds)

begin

repeat

n:=NumberOfVertices(G)

d:=Diameter(G)

k:=t-d

Find two vertices u and v such that d(u,v)=d

if k==0 then

G:=AddEdge(G,{u,v})
else

G:=AddVertices(G, [n+1, ..., n+k])

G:=AddEdges(G, {{u,n+1},{n+1,n+2},..., {n+k,v}})
end if

if LowerBounds[NumberOfVertices(G)] < NumberOfEdges(G) then

LowerBounds[NumberOfVertices(G)] := NumberOfEdges(G)

end if

until NumberOfVertices(G)>200

end procedure

procedure prune(G,t,LowerBounds)

begin

g:=girth(G)

GirthVertex[g]:=GirthCycle(G)

for i = 1→ g do

G:=DeleteVertex(G,GirthVertex[i])

if LowerBounds[NumberOfVertices(G)] < NumberOfEdges(G) then

LowerBounds[NumberOfVertices(G)] := NumberOfEdges(G)

end if

end for

repeat

v:=GetMinimumDegreeVertex(G)

G:=DeleteVertex(G,v)

if LowerBounds[NumberOfVertices(G)] < NumberOfEdges(G) then

LowerBounds[NumberOfVertices(G)] := NumberOfEdges(G)

end if

until NumberOfVertices(G)=t+1

end procedure



B
Summary of known values of ex(n; t), for
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